因此,当1e
a ≥时,()0f x ≥. 22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为
22(1)4x y ++=.
(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.
由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.
当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,
2=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43
k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.
当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,
2=,故0k =或
43
k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =
时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23
y x =-+. 23.解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩
故不等式()1f x >的解集为1{|}2
x x >. (2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥;
若0a >,|1|1ax -<的解集为20x a <<,所以21a ≥,故02a <≤. 综上,a 的取值范围为(0,2]