手机版

Holomorphic L^{p}-functions on Coverings of Strongly Pseudoc

发布时间:2021-06-07   来源:未知    
字号:

In this paper we will show how to construct holomorphic L^{p}-functions on unbranched coverings of strongly pseudoconvex manifolds. Also, we prove some extension and approximation theorems for such functions.

HolomorphicLp-functionsonCoveringsofStrongly

PseudoconvexManifolds

arXiv:0712.4302v1 [math.CV] 28 Dec 2007AlexanderBrudnyi DepartmentofMathematicsandStatisticsUniversityofCalgary,CalgaryCanadaAbstractInthispaperwewillshowhowtoconstructholomorphicLp-functionsonunbranchedcoveringsofstronglypseudoconvexmanifolds.Also,weprovesomeextensionandapproximationtheoremsforsuchfunctions.1.Introduction.1.1.Thepresentpapercontinuesthestudyofholomorphicfunctionsofslowgrowthonunbranchedcoveringsofstronglypseudoconvexmanifoldsstartedin[Br1]-[Br3].Ourworkwasinspiredbytheseminalpaper[GHS]ofGromov,HenkinandShubinonholomorphicL2-functionsoncoveringsofpseudoconvexmanifolds.AparticularinterestinthissubjectisbecauseofitspossibleapplicationstotheShafarevichconjectureonholomorphicconvexityofuniversalcoveringsofcomplexprojectivemanifolds.Theresultsofthispaperdon’timplydirectlyanynewresultsintheareaoftheShafarevichconjecture.However,oneobtainsarichcomplexfunctiontheoryoncoveringsofstronglypseudoconvexmanifoldsthattogetherwithsomeadditional

methodsandideaswouldleadtoaprogressinthisconjecture.

Themainresultof[Br3]dealswithholomorphicL2-functionsonunbranchedcoveringsofstronglypseudoconvexmanifolds.InthepresentpaperweusethisresulttoconstructholomorphicLp-functions(p=2)onsuchcoverings.Also,weprovesomeextensionandapproximationtheoremsforthesefunctions.Inourproofsweexploitsomeideasbasedonin nite-dimensionalversionsofCartan’sAandBtheoremsoriginallyprovedbyBungart[B](seealso[L]andreferencesthereinforsomegeneralizationsofresultsofthecomplexfunctiontheorytothecaseofBanach-valuedholomorphicfunctions).

1.2.Toformulateourresultswe rstrecallsomebasicde nitions.

Holomorphic L^{p}-functions on Coverings of Strongly Pseudoc.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)