In this paper we will show how to construct holomorphic L^{p}-functions on unbranched coverings of strongly pseudoconvex manifolds. Also, we prove some extension and approximation theorems for such functions.
Remark1.2LetdVM′betheRiemannianvolumeformonthecoveringM′obtainedbyaRiemannianmetricpulledbackfromN.Notethateveryf∈Hp,ψ(M′),p1≤p<∞,alsobelongstotheBanachspaceHψ(M′)ofholomorphicfunctionsgonM′withnorm z∈M′|g(z)|ψ(z)dVM′(z)p1/p.
pMoreover,onehasacontinuousembeddingHp,ψ(M′) →Hψ(M′).
Next,weintroducetheBanachspacelp,ψ,x(M′),x∈M,1≤p<∞,offunctionsgonr 1(x)withnorm
|g|p,ψ,x:= y∈r 1(x)|g(y)|pψ(y) 1/p,(1.7)
andtheBanachspacel∞,ψ,x(M′),x∈M,offunctionsgonr 1(x)withnorm
|g|∞,ψ,x:=
y∈r 1(x)sup{|g(y)|ψ(y)}.(1.8)
LetCM MbetheunionofallcompactcomplexsubvarietiesofMofcomplexdimension≥1.ItisknownthatifMisstronglypseudoconvex,thenCMisacompactcomplexsubvarietyofM.
InthesequelforBanachspacesEandF,byB(E,F)wedenotethespaceofalllinearboundedoperatorsE→Fwithnorm||·||.
Ourmainresultisthefollowinginterpolationtheorem.
Theorem1.3Supposethat M\CMisanopenSteinsubsetandK .Thenforanyp∈[1,∞]thereexistsafamily{Lz∈B(lp,ψ,z(M′),Hp,ψ(M′))}z∈ holomorphicinzsuchthat
(Lzh)(x)=h(x)
Moreover,
sup||Lz||<∞.z∈Kforanyh∈lp,ψ,z(M′)andx∈r 1(z).
AsimilarresultforMbeingaboundeddomaininaSteinmanifoldwasprovedin[Br4,Theorem1.3].
1.4.ToformulateapplicationsofTheorem1.3werecallsomede nitionsfrom[Br4].De nition1.4Letr:N′→NbeacoveringandX NbeacomplexsubmanifoldofN.ByHp,ψ(X′),X′:=r 1(X),wedenotetheBanachspaceofholomorphicfunctionsfonX′suchthatf|r 1(x)∈lp,ψ,x(N′)foranyx∈Xwithnorm
x∈Xsup|f|r 1(x)|p,ψ,x.(1.9)
3