手机版

Holomorphic L^{p}-functions on Coverings of Strongly Pseudoc(4)

发布时间:2021-06-07   来源:未知    
字号:

In this paper we will show how to construct holomorphic L^{p}-functions on unbranched coverings of strongly pseudoconvex manifolds. Also, we prove some extension and approximation theorems for such functions.

AsanapplicationofTheorem1.3weprovearesultonextensionofholomorphicfunctionsfromcomplexsubmanifolds.

LetUbearelativelycompactopensubsetofaholomorphicallyconvexdomainV NcontainingCMandY V\CMbeaclosedcomplexsubmanifoldofV.WesetX:=Y∩U.Consideracoveringr:N′→N.

Theorem1.5Foreveryf∈Hp,ψ(Y′),thereisafunctionF∈Hp,ψ(U′)suchthatF=fonX′.

Remark1.6LetM Nbeastronglypseudoconvexmanifold.Asbefore,weassumethatπ1(M)=π1(N)andNisstronglypseudoconvex,aswell.ThenthereexistanormalSteinspaceXN,aproperholomorphicsurjectivemapp:N→XNwithconnected bresandpointsx1,...,xl∈XNsuchthat

p:N\

1≤i≤l p 1(xi)→XN\1≤i≤l {xi}

isbiholomorphic,see[C],[R].Byde nition,thedomainXM:=p(M) XNisstronglypseudoconvex(soitisStein).Withoutlossofgeneralitywewillassumethatx1,...,xl∈XMsothat∪1≤i≤lp 1(xi)=CM.Next,XV:=p(V)isaSteinsubdomainofXN.Now,asYwetakethepreimageunderpofaclosedcomplexsubmanifoldofXVthatdoesnotcontainpointsx1,...,xl.

AnotherapplicationofTheorem1.3isthefollowingapproximationresult.Theorem1.7LetK M\CMbeacompactholomorphicallyconvexsubsetandO M\CMbeaneighbourhoodofK.Theneveryfunctionf∈Hp,ψ(O′)canbeuniformlyapproximatedonK′inthenormofHp,ψ(K′)byholomorphicfunctionsfromHp,ψ(M′).

InthecaseofcoveringsofSteinmanifoldstheresultssimilartoTheorems1.5and1.7areprovedin[Br4,Theorems1.8,1.10].

2.ProofofTheorem1.3.

2.1.Webegintheproofwiththefollowingauxiliaryresult.

Proposition2.1Foreveryz∈M\CMandp∈[1,∞]thereisalinearoperatorTψ,z∈B(lp,ψ,z(M′),Hp,ψ(M′))suchthat

(Tψ,zh)(x)=h(x)foranyh∈lp,ψ,z(M′)andx∈r 1(z).

(InthesequelwecallsuchTψ,zalinearinterpolationoperator.)

NbeastronglypseudoconvexmanifoldcontainingProof.LetM

Holomorphic L^{p}-functions on Coverings of Strongly Pseudoc(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)