In this paper we will show how to construct holomorphic L^{p}-functions on unbranched coverings of strongly pseudoconvex manifolds. Also, we prove some extension and approximation theorems for such functions.
2 ′Remark2.2ThefactsthatRzmapsHψ(M)intol2,ψ,z(M′)andiscontinuous
easilyfollowfromtheuniformcontinuityoflogψandthemeanvaluepropertyforplurisubharmonicfunctions.Similarlyoneobtainsthattherestrictionoperator
2 ′(M)→H2,ψ(M′),g→g|M′,iscontinuous.RM′:Hψ
Weset
Tψ,z:=RM′ Sψ,z.
ThenTψ,zistherequiredinterpolationoperatorforp=2.Letusprovetheresultforp=2.
Wewillnaturallyidentifyr 1(z)with{z}×SwhereSisthe breofr.Let{es}s∈S,es(z,t)=0fort=sandes(z,s)=(ψ(z,s)) 1/2,betheorthonormalbasisofl2,ψ,z(M′).Weset
hs,z:=Tψ,z(es)∈H2,ψ(M′).
Thenforasequencea={as}s∈S∈l2(S)wehave
ha:=
s∈S ashs,z∈H2,ψ(M′)and|ha|2,ψ≤c||a||l2(S).(2.1)
Wede neFs,z∈H1,ψ(M′)bytheformula
Fs,z(w):=ψ(z,s)h2s,z(w),
Then(2.1)yields w∈M′.(2.2)|Fs,z(w)|
s∈S
ψ(z,s)
Also,
(Tψ,za)(z,t):= ψ(w) ≤c2|a|∞,ψ,z.
asFs,z(z,t):=atψ(z,t)e2t(z,t)=at:=a(z,t).
s∈S
ThusTψ,zistherequiredinterpolationoperatorforp=∞.
5