解释灰色系统预测 是什么并举例,可用于数学建模学习
2.3灰色系统的基本原理 公理1:差异信息原理。“差异”是信息,凡信息必有差异。
公理2:解的非唯一性原理。信息不完全,不明确地解是非唯一的。 公理3:最少信息原理。灰色系统理论的特点是充分开发利用已有的“最少信息”。
公理4:认知根据原理。信息是认知的根据。
公理5:新信息优先原理。新信息对认知的作用大于老信息。 公理6:灰性不灭原理。“信息不完全”是绝对的。
2.4灰色系统理论的主要内容
灰色系统理论经过10多年的发展,已基本建立起了一门新兴学科的结构体系,其主要内容包括以“灰色朦胧集”为基础的理论体系、以晦涩关联空间为依托的分析体系、以晦涩序列生成为基础的方法体系,以灰色模型(G,M)为核心的模型体系。以系统分析、评估、建模、预测、决策、控制、优化为主体的技术体系。
灰色关联分析 灰色统计 灰色聚类
3灰色系统预测模型
灰色预测方法的特点表现在:首先是它把离散数据视为连续变量在其变化过程中所取的离散值,从而可利用微分方程式处理数据;而不直接使用原始数据而是由它产生累加生成数,对生成数列使用微分方程模型。这样,可以抵消大部分随机误差,显示出规律性。
3.1灰色系统理论的建模思想
下面举一个例子,说明灰色理论的建模思想。考虑4个数据,记为(
0)(1),(0)(2),(0)(3),(0)(4)