所求抛物线的表达式为y
123
x x. ·································································· (5分) 22
11
AB d AB AF. 22
(3)由题意,知AB∥x轴.
设抛物线上符合条件的点P到AB的距离为d,则S△ABP
d 2.
·············································································· (7分) 点P的纵坐标只能是0,或4. ·
123
令y 0,得x x 0.解之,得x 0,或x 3.
22
0),P2(3,0). 符合条件的点P1(0,
令y 4,得
1233 x x
4.解之,得x . 222
符合条件的点P3
4),P44). 综上,符合题意的点有四个: P0),P2(3,
0),P3(1(0,
33········································· (10分)
4),P4(4). ·
22
(评卷时,无P0)不扣分) 1(0,
25.(本题满分12分) 解:(1)如图①,
连接AC、BD交于点P,则 APB 90°.
······················································ (3分) 点P为所求.·
(2)如图②,画法如下:
1)以AB为边在正方形内作等边△ABP;
2)作△ABP的外接圆⊙O,分别与AD、BC交于点E、F.
D
A
① ② C
B
APB上的圆周角均为60°, 在⊙O中,弦AB所对的
上的所有点均为所求的点P. ··················· (7分) EF
(3)如图③,画法如下:
1)连接AC;
2)以AB为边作等边△ABE;
3)作等边△ABE的外接圆⊙O,交AC于点P; 4)在AC上截取AP CP. 则点P、P 为所求. ············································· (9分) (评卷时,作图准确,无画法的不扣分) 过点B作BG⊥AC,交AC于点G. 在Rt△ABC中,AB 4,BC 3.
③
(第25题答案图)