2 x
(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为______,B4的坐标为______。
(2)按以上规律将△OAB进行n次变换得到△AnBn,则可知An的坐标为_____,Bn的坐标为______。
(3)可发现变换的过程中 A、A1、A2…An 纵坐标均为______。
nn1
答案:(1)(16, 3)(32, 0) (2)(2, 3)(2+, 0) (3)3 22.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△
ABC
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE. (3)如图3,在(1)的条件下,直线AC交x轴于M,P(
,k)是线段BC上一点,在线段BM上
是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 解答:解:(1)如图1,作CQ⊥x轴,垂足为Q, ∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°, ∴∠OAB=∠QBC, 又∵AB=BC,∠AOB=∠Q=90°, ∴△ABO≌△BCQ, ∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1, ∴C(﹣3,1), 由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;
(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G, ∵AC=AD,AB⊥CB, ∴BC=BD, ∴△BCH≌△BDF, ∴BF=BH=2, ∴OF=OB=1, ∴DG=OB, ∴△BOE≌△DGE, ∴BE=DE;