背景:传统的HLA测序分型技术都是对父系母系双倍体进行扩增,由于HLA多样性高,产生了大量的模棱两可难题,而采用基于组特异性单倍体全长测序分型方法来解决模棱两可结果的确认定型鲜有报道。目的:分析基于组特异性单倍体全长测序分型方法对HLA基因分型模棱两可结果准确定型的效果。方法:对2例模棱两可结果标本以低分辨率分型方法结果作为参考起点,通过组特异性扩增分离,基于等位基因全长单倍体的Sanger测序(PCR-SBT)分型。
王宋兴,等. 基于HLA 组特异性单倍体全长测序方法对模棱两可结果的准确定型 ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH
3215
www.CRTER .org
[11] Crocchiolo R, Zino E, Vago L, et al. Nonpermissive
HLA-DPB1 disparity is a significant independent risk factor for mortality after unrelated hematopoietic stem cell transplantation. Blood. 2009;114(7):1437-1444. [12] Fleischhauer K, Shaw BE, Gooley T, et al. Effect of
T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366-374. [13] Hollenbach JA, Madbouly A, Gragert L, et al. A combined
DPA1-DPB1 amino acid epitope is the primary unit of selection on the HLA-DP heterodimer. Immunogenetics. 2012;64(8):559-569.
[14] Spellman SR, Eapen M, Logan BR, et al. A perspective on the
selection of unrelated donors and cord blood units for transplantation. Blood. 2012;120(2):259-265.
[15] Lucan C, Pop L, Florian A, et al. HLA Genotyping using Next
Generation Sequencing. Roman J Int Med. 2016,54(2): 98-104.
[16] McGinnis MD, Conrad MP , Bouwens AG, et al. Automated,
solid-phase sequencing of DRB region genes using T7 sequencing chemistry and dye-labeled primers. Tissue antigens. 1995;46(3 Pt 1)):173-179.
[17] Versluis LF, Rozemuller E, Tonks S, et al. High-resolution
HLA-DPB typing based upon computerized analysis of data obtained by fluorescent sequencing of the amplified
polymorphic exon 2. Human Immunol. 1993;38(4):277-283. [18] Voorter CE, Rozemuller EH, de Bruyn-Geraets D, et al.
Comparison of DRB sequence-based typing using different strategies. Tissue Antigens. 1997;49(5):471-476.
[19] Scheltinga SA, Johnston-Dow LA, White CB, et al. A generic
sequencing based typing approach for the identification of HLA-A diversity. Human Immunol. 1997;57(2):120-128. [20] Voorter CE, Kik MC, van den Berg-Loonen EM.
High-resolution HLA typing for the DQB1 gene by
sequence-based typing. Tissue Antigens. 1998;51(1):80-87. [21] Swelsen WT, Voorter CE, van den Berg-Loonen EM.
Sequence analysis of exons 1, 2, 3, 4 and 5 of the HLA-B5/35 cross-reacting group. Tissue Antigens. 2002;60(3):224-234. [22] Swelsen WT, Voorter CE, van den Berg-Loonen EM.
Ambiguities of human leukocyte antigen-B resolved by
sequence-based typing of exons 1, 4, and 5. Tissue Antigens. 2004;63(3):248-254.
[23] Robinson J, Halliwell JA, McWilliam H, et al. The IMGT/HLA
database. Nucl Acids Res. 2013;41(Database issue): D1222-1227.
[24] Mack SJ, Cano P , Hollenbach JA, et al. Common and
well-documented HLA alleles: 2012 update to the CWD catalog. Tissue Antigens. 2013;81(4): 194-203. [25] Raphael C,Mirjana R,Seiamak B. Next-Generation
Sequencing of the HLA locus: Methods and impacts on HLA typing, population genetics and disease association studies. Human Immunol. 2016;77(11):1016-1023. [26] Sharifeh K,Mansour S,Mahboobeh R, et al. Novel Multiplex
Fluorescent PCR-Based Method for HLA Typing and
Preimplantational Genetic Diagnosis of β-Thalassemia. Arch Med Res. 2016;47(4):293-298.
[27] Eric T,Maureen M,Rosanne P , et al. Performance
Characteristics and Validation of Next-Generation
Sequencing for HLA typing. J Mol Diagn. 2016;18(5):668-675. [28] Moalic-Allain V,Mercier B,Gueguen P , et al. Next generation
sequencing with a semi-conductor technology (Ion Torrent PGM™) for HLA typing: overall workflow performance and debate. Ann Biol Clin (Paris). 2016;74(4): 449-456.
[29] Erlich H. HLA DNA typing: past, present, and future. Tissue
Antigens. 2012;80(1):1-11.
[30] De Santis D, Dinauer D, Duke J, et al. 16(th) IHIW : review of
HLA typing by NGS. Int J Immunogenet. 2013;40(1):72-76. [31] Smith LK. HLA typing by direct DNA sequencing. Methods in
molecular biology. 2012;882:67-86.
[32] Bentley G, Higuchi R, Hoglund B, et al. High-resolution,
high-throughput HLA genotyping by next-generation sequencing. Tissue antigens. 2009;74(5):393-403.
[33] Lind C, Ferriola D, Mackiewicz K, et al. Next-generation
sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Human Immunol. 2010; 71(10):1033-1042.
[34] Leenam D,Sunil P . Study of HLA allele frequency in Patel
sub-population from India: Marrow Donor Registry India data. Indian J Transplant. 2016;10(3):73-74.
[35] González-Galarza FF, Takeshita LY , Santos EJ, et al. Allele
frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43(Database issue):D784-788. [36] Nagy M, Entz P , Otremba P , et al. Haplotype-specific
extraction: auniversal method toresolve ambiguous
genotypes and detect new alleles-demonstrated on HLA-B. Tissue Antigens. 2007;69:176-180.
[37] Voorter CE, Palusci F, Tilanus MG . Sequence-based typing of
HLA: an improved group-specific full-length gene sequencing approach. Methods Mol Biol. 2014;1109:101-114. [38] Profaizer T,Lázár-Molnár E,Close D, et al. HLA genotyping in
the clinical laboratory: comparison of next-generation sequencing methods. HLA. 2016;88(1-2):14-24. [39] Dalva K,Beksac M. Sequence-specific primed PCR
(PCR-SSP) typing of HLA Class I and Class II alleles. Methods Mol Med. 2007;134: 51-60.
[40] Saunders PM,Pymm P ,Pietra G, et al. Killer cell
immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp Med. 2016;213(5):791-807.
[41] Shiina T. Next generation sequencing based HLA genomic
and polymorphism analyses. MHC. 2015;22(2):84-94. [42] Assia G,Rachida R,Habiba A, et al. HLA Polymorphism in
Algerian Children With Lymphomas. J Pediatr Hematol Oncol. 2015;37(8):458-461.