2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形
∴FN=又∵DM=∴DM=FN=
,∠FNA=90°,∠FAN=∠AFN=45°, , FA,
∵∠EMD=∠EMA+∠AMD=90°+∠AMD, ∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC =360°﹣45°﹣45°﹣(180°﹣∠AMD) =90°+∠AMD ∴∠EMD=∠EAF, 在△EMD和△∠EAF中,
∴△EMD∽△∠EAF, ∴∠MED=∠AEF, ∵∠MED+∠AED=45°, ∴∠AED+∠AEF=45°, 即∠DEF=45°, 又∵DE=DF, ∴∠DFE=45°,
∴∠EDF=180°﹣45°﹣45°=90°, ∴DE⊥DF, ∴结论④正确.
∴正确的结论有4个:①②③④. 故选:D.
点评: (1)此题主要考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.
(2)此题还考查了等腰直角三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径.