Three-dimensional solitary and vortex structures in Bose-Einstein condensates are studied in the framework of Gross-Pitaevskii model including the simultaneous action of local cubic-quintic nonlinearity and nonlocal dipole-dipole interactions. Nonlocal int
2
whereg=4π¯h2a/M,aisthes-wavescatteringlength.Inthefollowingweconsiderattractivetwo-particlein-teraction(a<0)andrepulsivethree-particleinteraction(gK<0).Notethatweaccounthereonlyforthecon-servativepartofthree-particleinteraction.Thus,GPE(2)conservesthenorm(thenumberofatomsinthecon-densedstate):
2
N=|Ψ|d3r,(3)energy:
E=2
¯2h
2g|Ψ|4
1
(4)
gd|Ψ|2Θd3r,Θ=Vd(r r′)|Ψ(r′)|2d3r′,
momentumandangularmomentum.
Inthenextsection,thegeneralpropertiesofstationarysolitonsandvorticesarestudiedbyanalyticalvariationalmethodandnumerically.
III.
STATIONARY3DSOLITONSAND
VORTEXSOLITONS
StationarysolutionsoftheEq.(2)havetheformΨ(r,t)=ψ(r)exp(iλt)andobeythedimensionlessequa-tion:
λψ+ ψ+ψ|ψ| ψ|ψ|+CψΘ=0,
2 1 ,Θ=FVd(k)F|ψ|
4π
2
4
(5)(6)
denotestheFouriertransformation,V d(k)=whereF
aρ
whereρ=
|m|
ρ2
exp
2a2z
+im ,
(7)