Three-dimensional solitary and vortex structures in Bose-Einstein condensates are studied in the framework of Gross-Pitaevskii model including the simultaneous action of local cubic-quintic nonlinearity and nonlocal dipole-dipole interactions. Nonlocal int
3
equationwhichdescribesevolutionofsmallperturbation:
iN
l
FIG.2:NumberofparticlesNvsλfordi erentstationarysolutionsatC=0.3.Numericalresultsareshownincir-cles,dashedlinesareforvariationalpredictions.Thearrowsindicatestabilitythresholdsfor
vortices.
FIG.3:NumberofparticlesNvsparameterλforvorticeswithm=1withdi erentC.Numericalresults.
IV.STABILITYANDDYNAMICS
Westartinvestigationofthestabilityofvorticeswithanalysisofsmallperturbationsappliedtothestationarysolution:
Ψ=(ψ+ )eiλt,
where| (r,t)|<<|ψ|.LinearizingtheGPE(2)invicinityofstationarysolutiononegetsthenonstationary
(t+ t)
2 t
ln
ν