Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Figure3:Diagrammaticandoperator/matrixelementrepresentationofthehard-
collinear(leftcolumn),soft(middlecolumn)andcollinearcontributiontothedia-
gramofFigure1.Eachcolumnshows:theoriginaldiagramwiththehard-collinear
subgraphmarkedbybold-facelines(upperrow),andwiththedashedlineindicating
wherethegraphfactorizesintoashort-distanceandlong-distancesubgraph;theop-
eratorvertexinthee ectivetheorycorrespondingtothecontractedhard-collinear
subgraph(middlerow);thecontributiontotheoperatormatrixelement γ|Oi|q¯b correspondingtotheoriginaldiagram(lowerrow).
softandcollinearmodes)thisiswrittenas
C0(E,n l)FT γ|[Aγ(sn+)]c[¯q(tn )hv(0)]s|q¯b (E,n l).(17)
ThesymbolFT ... meansthataFouriertransformofthematrixelementwithrespecttothepositionargumentsofthe eldsistaken,with(E,n l)thevariablesconjugateto(sn+,tn ).Theindexonproductsof eldsindicateswhethertheyaresoftorcollinear,andthenon-localityoftheoperatorisrelatedtothenon-polynomialdependenceofthehard-collinearpropagatoronthemomentumcomponentn lofthelightexternalquark,andthemomentumcomponentn+p′oftheexternalphoton.Thematrixelementfactorizestriviallyinto
q(tn )hv(0)]s|q¯b (n l).(18)FT γ|[Aγ(sn+)]c|0 (E)FT 0|[¯¯meson,Thephotonmatrixelementcanbecalculated.Whentheq¯bstateisreplacedbyaB
thesoftmatrixelementgivestheBmesonlight-conedistributionamplitude.Hence(17)assumestheformofaconvolutionofahard-collinearcoe cientfunctionwiththeBmesonlight-conedistributionfunction,whichreproducesthefactorizationpropertyoftheB→γtransitionatleadingorderin1/mb,andatleadingorderinαs[5].
Thehard-collinearcontributiontothetoyintegralanditsoperatorinterpretationisshownintheleftcolumnofFigure3.Whenthehard-collinearsubgraphiscontractedtoa“point”,thecorrespondingoperatorhasthesame eldcontentasin(17),butwitha