Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections
Thereisasingularityfork⊥→∞foranyn k.Thepoleatδ=0isanendpointdivergencefromn k→0foranyk⊥.Thisimpliesthatn+kbecomeslargefor xedk⊥~λ2,andhencethe“quark”withmomentumkbecomescollinear.Inthesoftregionthetransversemomentumandlongitudinalmomentumintegralsdonotfactorize,andthereisalsoadivergencewhenk⊥→∞andn k→0simultaneously,whichcorrespondstothedoublepoleinthehard-collinearintegral.
Sincewedidnotregularizethehard-collinearcontributionanalytically,thecorrectprocedureistoexpand rstinδandthenin .Infactthepoleinδcancelswiththecollinearcontributionbeforeexpandingin .However,performingbothexpansionstocomparewith(10)weobtain
Is= 1
δ lnm2
lnm2
2+1
µ2 1
µ2+5π2
2p′·l 1
ln2p′·lµ2lnm2
2ln2m2
12 .(14)
Finallyaddingtothisthehard-collinearcontribution(7),thesingularityin alsocancels,andweobtain ′2p·l1,(15)ln2Ic+Is+Ihc= 23
inagreementwiththeexpansion(5)ofthefullintegral.Weconcludethatingeneralhard-collinear,collinearandsoftmomentumregionsmustbeconsidered.Inthescalarintegral
(3)allthreeregionscontributealreadytotheleadingtermintheexpansion.Semi-hardmodeswithscaling(λ,λ,λ)arenotneededinthiscalculation,sincethecorrespondingintegralsarescaleless.
InQCDthephoton-vertexintegralcontainsanumeratorproportionalton kwhichsuppressesthecollinearregionbyafactorofλ2relativetothehard-collinearandsoftregion.Forthisreasonitissu cienttoconsideronlyhard-collinearandsoftcon gurationsinthefactorizationtheoremforB→γlνatleadingpowerin1/mb,ashasbeendonein
[6,7,8].Hard-collinearmodesareperturbativeandcanbeintegratedout,resultinginhard-scatteringkernels.Softandcollinearmodeshavevirtualityλ4~Λ2,andcannotbetreatedinperturbationtheory.The1/mbsuppressionofthecollinearcontributioninQCDimpliesthatthehadronicstructureofthephotonisasub-leadinge ectinB→γlνdecay.
2.2O -shellregularization
Thescalarintegral(10)hasrecentlybeendiscussedin[25],howeverwithm=0andtheexternalcollinearandsoftlineso -shell,l2≡ L2=n+ln l~λ4,and(p′)2≡ (P′)2=n+p′n p′~λ4.Itisinstructivetodiscussthedi erencetothecaseabove.