In this introductory review we discuss dynamical tests of the AdS_5 x S^5 string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we argue that semiclassical string energies yield information on the quantum spectrum of the string in the
D
=
+
++...= pNc
pplanard
pnonplanar
Figure4:Theactionofthedilatationoperatoronatraceoperator.
Wcorrespondstothestate|↑ andZto|↓ .
Tr[ZW2ZW4]
|↓↑↑↓↑↑↑↑ cyclic=J1+J2.
Averye cienttooltodealwiththisproblemisthedilatationoperatorD,which
J1,J2wasintroducedin[66,8].ItactsonthetraceoperatorsOαata xedspace-time
pointxanditseigenvaluesarethescalingdimensions
J1,J2J1,J2DαβOβ(x).(44)D Oα(x)=
βHowdoesonecomputetheassociatedscalingdimensionsat(say)oneloopor-derforJ1,J2→∞?ClearlyoneisfacingahugeoperatormixingproblemasallJ1,J2OiwitharbitrarypermutationsofZ’sandW’saredegenerateattreelevelwhereOi1 0J,J2
Thedilatationoperatorisconstructedinsuchafashionastoattachtherelevantdiagramstotheopenlegsofthe“incoming”traceoperatorsasdepictedin gure4andmaybecomputedinperturbationtheory
D=∞ n=0D(n),(45)
2nwhereD(n)isofordergYM.Fortheexplicitcomputationoftheone-looppieceD(1)
seee.g.thereview[12],wheretheconcreterelationtotwo-pointfunctionsisalsoexplained.Inour‘minimal’SU(2)sectorofcomplexscalar eldsZandWittakestherathersimpleform
.dZji(46)
Notethatthetree-levelpieceD(0)simplymeasuresthelengthoftheincidentoper-ator(orspinchain)J1+J2.Theeigenvaluesofthedilatationoperatorthenyieldthescalingdimensionswearelookingfor–diagonalizationofDsolvesthemixingproblem.
D(0)ˇ+WWˇ),=Tr(ZZD(1)= 2gYM