第II卷(非选择题)
请点击修改第II卷的文字说明
二、新添加的题型
三、解答题
9.在Rt△ABC中,∠CAB=90°,AB=AC.
(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.①判断线段MN、BM、CN之间有何数量关系,并证明;
②若AM=a,BM=b,AB=c,试利用图①验证勾股定理a2 b2=
c2;
(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN
、BM、CN之间有何数量关系?(直接写出答案)
10.(6分)小王剪了两张直角三角形纸片,进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合, 折痕为DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为 ;
操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠, 使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.
11.如图,有一块直角三角形纸片,两直角边AC=5cm,BC=12cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.