高分子材料成型加工试题汇总
高分子材料成型加工
习题汇总
高分子材料成型加工试题汇总
高分子材料成型加工试题汇总
目录
一、基础部分..............................................................................................1
二、原料配制..............................................................................................5
三、压延与压制.......................................................................................13
四、挤出成型...........................................................................................22
五、中空吹塑成型...................................................................................29
六、注塑成型...........................................................................................32
七、热成型................................................................................................47
八、其他成型部分...................................................................................52
九、高分子材料成型工艺学期末考试复习...........................................53
十、高分子材料加工成型原理题库.......................................................62十一、加工部分习题与思考题...............................................................74十二、加工题库.......................................................................................82十三、“塑料加工原理”复习题...........................................................102
高分子材料成型加工试题汇总
高分子材料成型加工试题汇总
一、基础部分
1、简述引起熔体破碎的主要的原因。
熔体破裂是液体不稳定流动的一种现象。产生熔体破裂的原因主要是熔体中的弹性回复所引起。
熔体在管道中流动时剪切速率分布的不均匀性使熔体中弹性能不均匀分布。当熔体中产生的弹性应力一旦增加到与滞流动阻力相当时,粘滞阻力就不能再平衡弹性应力的作用,而弹性效应所致熔体流速在某一位置上的瞬时增大形成“弹性湍流”,即“应力破碎”现象。在园管中,如果产生弹性湍流的不稳定点沿着管的周围移动,则挤出物将呈螺旋状,如果不稳定点在整个圆周上产生,就得到竹节状的粗糙挤出物。
产生不稳定流动和熔体破裂现象的另一个原因是熔体剪切历史的波动引起的。即剪切应力不同,熔体所产生的弹性效应不同,从而使其弹性回复产生差异,形成熔体破裂。
2、将聚丙烯丝抽伸至相同伸长比,分别用冰水或90℃热水冷却后,再分别加热到90℃的二个聚丙烯丝试样,哪种丝的收缩率高,为什么?
用冰水的聚丙烯丝收缩率高,因为冰水冷却时,冰水的温度远远低于聚丙烯的最佳结晶温度,此时,聚丙烯丝的结构更多的保持了其纺丝过程中分子的取向状态,而用90℃热水冷却时,聚丙烯分子具有较为充分的解取向时间,当聚丙烯丝再次分别加热到90℃时,前者才进行较高程度的解取向,表现出较高的收缩率。
3、简述高聚物熔体流动的特点。
由于高聚物大分子的长链结构和缠绕,聚合物熔体、溶液和悬浮体的流动行为远比伤分子液体复杂。在宽广的剪切速率范围内,这类液体流动时剪切力和剪切速率不再成比例关系,液体的粘度也不是一个常此因而聚合物液体的流变行为不服从牛顿流动定律。即非牛顿型流动。
高分子材料成型加工试题汇总
4、举例说明高聚物熔体粘弹性行为的表现。
聚合物流动过程最常见的弹性行为是端末效应和不稳定流动。
端末效应包括入口效应和模口膨化效应(离模膨胀)即巴拉斯效应。
不稳定流动即可由于熔体弹性回复的差异产生熔体破碎现象。
5、说明链结构对高聚物粘度的影响。
聚合物的结构因素即链构型和链的极性、分子量、分子量分布以及聚合物的组成等对聚合物液体的粘度有明显影。
聚合物链的柔性愈大.缠结点众多,链的解缠和滑移愈困难,聚合物流动时非牛顿性愈强。链的刚硬性增加和分子间吸引力愈大时,熔体粘度对温度的敏感性增加,提高这类聚合物的加工温度有利于增大流动性。
聚合物分子中支链结构的存在对粘度也有影响,尤以长支链对熔体粘度的影内最大,聚合物分子中的长支链可增加与其邻近分子的缠结,因此长支链对熔体成溶液流动性的影响比短支链重要。
聚合物分子量增大,不同链段偶然位移相互抵消的机会愈多,分子链重心移动慢,要完成流动过程就需要更长的时间和更多的能量,所以聚合物的粘度随分子量增加而增大。
熔体的粘度也与分子量分布有关。一般在平均分子量相同时,熔体的粘度随分子量分布增宽而迅速下降,其流动行为表现出更多的非牛顿性。
6、说明温度对不同结构高聚物粘度的影响。
温度是物质分子运动能力的表现。温度越高,物质的运动能力越高,表现出其可变形性越好,即流动性好。当聚合物链的柔性大,其本身分子运动在常规的温度范围内,运动能力较高,表现出对温度的敏感性较低,而链的刚硬性增加和分子间吸引力愈大时,分子运动能力在常规的温度范围内较差,从而显现熔体粘度对温度的敏感性增加,提高这类聚合物的加工温度有利于增大流动性。