法均可在一定程度上通过增加活性基团等方法,提高PBS的生物活性和生物相容性。研究人员通过H2O 和NH3等离子体改性PBS,极大地提高了PBS的亲水性;同时,N2处理的试样具备一定的抗菌性能,避免了其使用过程中的细菌感染问题。此外,近期的研究还通过生物耦合及化学接枝等方法,提高了其生物相容性,大大拓宽了其在生物材料领域的应用范围。
5.3 共聚改性
PBS 共聚改性通常将芳香族或脂肪族的二元酸及脂肪族二元醇引入PBS中,常用的共聚二元酸为对苯二甲酸、己二酸等,常用的共聚二元醇为乙二醇,聚乙二醇、1,4-环己烷二甲醇等,所制备的共聚酯具有较好的力学性能及降解性能,所引入共聚单体的成本一般较低。研究人员采用对苯二甲酸、相对分子质量1000的聚乙二醇对PBS主链进行了共聚改性,制备出了共聚物丁二酸-丁二醇-苯甲酸共聚物(PBST) 及嵌段共聚物丁二酸-丁二醇/乙二醇嵌段共聚物(PBES),得到的共聚物数均相对分子质量约为5×104;PEG 的引入使得共聚物的结晶度降低、断裂伸长率有较大幅度增加,最大能够达到846.4%; TA 的引入则使所制备共聚物的结晶度增加,而断裂伸长率有所减小,所制备的两种聚合物都有良好的热稳定性。
此外,研究人员还用癸二酸、己二酸部分代替丁二酸,再采用熔融溶液相结合的聚合方法,制备出一系列共聚物;以丁二酸、BDO 和1,2-己二醇作为原料,通过直接熔融缩聚法,制备了丁二酸丁二醇酯-co-丁二酸1,2-己二醇酯的共聚物(PBSH) ;将精对苯二甲酸(PTA) 及1,4-环己烷二甲醇(1,4-CHDM) 介入到PBS 分子主链中,成功制备出了PBS-co-PTA和PBS-co-CHDM 的无规共聚物。5.4 共混改性
PBS 虽然具有良好的生物降解性和优异的加工性能,但生产成本较高,通过与其他聚合物共混,一方面可提高PBS 的机械性能,同时还可以降低成本。通常与PBS 共混的物质有合成高分子、天然高分子及无机填料等。主要有乙烯-乙烯醇共聚物( EVOH) 与PBS 熔融共混、PBS 与EVOH共混、淀粉和PBS 共混、有机改性蒙脱石和PBS 共混、碳酸钙和PBS 共混等等。
6 PBS的展望
目前,我国PBS及其共聚物的生产能力约100kt/a,预计到2020年,我国对PBS的需求量将达到3000kt/a,大力开发PBS生产技术和扩大PBS生产能力依然是中国乃至全球解决PBS缺口的首要问题。然而,由于上游产品丁二酸的成本较高,使得PBS 的成本一直居高不下,丁二酸的生产能力制约着PBS行业的发展,探索高效环保的丁二酸制备方法仍是未来几年研究的重点之一。其次,扩大PBS 产业规模,对开发1,4-丁二醇下游产品,抑制产能过剩也有一定意义。同时,PBS 的聚合工艺需进一步优化,改性研究仍需深入,探求产物性能佳,降低能耗物耗,提高生产效率、确保生产过程安全环保,降低生产成本等仍是目前需要研究的重点课题。随着国家政策的扶持,市场需求的进一步扩