Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
2A.Generalmodel
Lets={s(x,y)|(x,y)∈[1,Nx]×[1,NimagetosegmentwithNwithy]}denotethex×Nypixelsandgraylevelsquantizedexample,Qon=Q256levels.).OneOneassumesthushasthats∈the[1,Qimage]withisQcomposed∈N(forofRregions uwithu=1,...,R(notnecessarilysimplyconnected).ThegraylevelsTheofnumber ofpixelsof uwillbenotedNu.uareassumedtobespatiallyuncorrelatedandindependentlystatisticalregion-baseddistributedwithsnakes,GLPDthePuWithcriterion.
thathastoobtainedbeoptimizedbydetermininginorderthetostochastic ndthe nalcomplexitycontourofΓthecanim-beage[14],[15],[16].Withthisapproach,onehastodeterminethethedatasumandofthefornumberthedescriptionofbitsneededofthemodelfortheofdescriptionthedata[13].ofSincetheGLPDthemodelPu,theofstochasticthedataincludescomplexitythecancontourbewrittenmodelasandthesumof3terms
= S+ P+ C
(1)
wherelevels1of SRtheisimagethenumberwithbothofbitsthecontourneededΓtoandcodethetheGLPDsgrayP,...,P xed, PisthenumberofbitsneededtocodethecontourGLPDsΓ.Inandthe following,Cisthenumberthesequantitiesofbitsneededwillbetomeasuredcodetheinnats(i.e.naturallogarithmwillbeconsidered).Wedetailinterms.
thefollowingtheparticularexpressionofthesedifferentB.Graylevelcoding
Thenumberofnats SneededtodescribethegraylevelsofswithgivenGLPDsP1,...,PRissimplyequalto
S=
R)])
(2)
u=1(x,y
log(Pu[s(x,y)∈ u
sincein uthenumberofnatsneededtocodethevalue
s(x,y)withanentropiccode[23]is log(Pu[s(x,y)]).ThechoiceoftheGLPDestimationtechniquewehavedonesimilarissegmentationbasedontwoperformancesconstraints.toThethe rstonesoneobtainedistowithgettechniquesbasedonparametricstatisticalmodelsadaptedtotheatechniquegraylevelwhich uctuations.canleadThetolowsecondcomputationalconstrainttime.istodevelopForthatpurpose,weproposetoestimatetheGLPDineachregion withanirregularstepfunctionPqu
u
(s)withqsteps(Fig.1)
Pqu
(s)
=
qpu(j)Rj(s),(3)
j=1
whereRj(s)=1ifs∈[aj,aj+1[andRj(s)=0otherwise,
withajandwhere∈[1the,Qa],ja1=1,aq+1=Q+1andaj>aiifj>areidenticalforeachdistributionPu
i
thushasPqu
(s)=p.Thisisaq.One
u(j)ifs∈[aj,aj+1[generalmodelthatcandescribeanydistributionofrandomvariablequantizedonQlevels.Inparticular,weshallshowonrealimagessegmentationthatthisforapproachwhichtheallows uctuationsonetoperformare
multiplicative.
SARimageIEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????
Y
CNEUQERFjj+1BINS’INDEX
Fig.(GLPD).1.Illustrationsolidline:ofhistogram,theestimationdottedofthelinegray:steplevelsfunction.
probabilitydistributionIndeed,oncethenoiseispresentineachregionoftheimage,thewaytherandomgraylevelshavebeengeneratedisnomoreimportanttheIndifferentandeachregionregionsonlythedifferencebetweenthehistogramsof isrelevant.
uandforgivenvaluesoftheaj,theMaximumLikelihoodestimationp u(j)ofthepu(j)is
p u(j)=
1
b,
(4)
jNu
wherebj=aj+1 usuchas ajandwhereNu(j)isthenumberofpixelsins∈[aj,aj+1[.Onethusgets
S=
Ru=1 qN(j)logj=1
Nu(j)
uNu)nats.Furthermore,onealsoneedstothatcodecodingq 1thevaluesvaluebbj(since q
j=1bj=Q).Weconsiderjrequiresapproximatelylog(1+bj)natssincebj=1needstobecodedwithatleastonebit.Sincethevaluesbjareequalineachregion,onegets
P=
R(q 1)log
u=1
…… 此处隐藏:1292字,全部文档内容请下载后查看。喜欢就下载吧 ……