Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
(a)(b)(c)
(d)
(e)
(f)
Fig.by(b)the9.ERS-(a)1SARimage(120×108pixels)ofanagriculturalareaobtained(computationInitialcontour.satellite(distributedbytheESAandprovidedbytheCNES).pixels).time:15(c)Finalcontourobtainedwiththe3-stagestrategy(computation(e)Initialseconds).(d)Sceneilluminatedbyalaser(41×34bettervisualization,timecontour.:(f)Finalcontourobtainedwiththe3-stagestrategythe0.4contrastseconds).ofThethelevelimagessethassnakebeenhasincreased.
beenused.Fora(a)(b)(c)(d)
Fig.camera.10.technique(a)SegmentationSegmentationofresultanimageobtained(86×with60pixels)theproposedacquirednonparametricwithaCCDcessedaversionwithofthe(a)3-stageobtainedstrategy.with:Results(b)aGaussianofthesegmentationmodelfortheonGLPDs,aprepro-techniqueGammamodelfortheGLPDs,(d)theproposednonparametricstatistical(c)kindofinitializationwiththe3-stagethaninstrategyFig.9b(computationhasbeenusedtimefor:4theseconds).levelsetThesnake.
samebytheuserandcanbeimplementedwithdifferentcontourdescriptorsWehaveillustratedsuchaslevelthesetresultssnakeonorpolygonalSAR,videocontour(color)model.andtexturedimages.Moreover,uptolowcontrastvalues,wehaveshownexponentialthatwhenfamily,thethegrayproposedlevelpdfapproachoftheimageprovidebelongsegmen-tothetationstatisticalresultsapproachequivalent.Oftocourse,thoseobtainedthemainwithadvantageaparametricoftheproposednonparametricstatisticaltechniqueisitsrobustnesssincewithoutitadaptsrequiringtotheapriori uctuationinformation.
distributionsofthegraylevelsThereexistsdifferentperspectivestothiswork.Itwouldbeinterestingtogeneralizethistechniquetoothermultiregionapproachesintoaccountbasedpossibleforexamplespatialcorrelationsonlevelsetistechniques.alsoachallengingTakingproblem.
ACKNOWLEDGMENTS
TheauthorsaregratefultoConseilR´egionalPACAfortakingpartinthe nancingofthePhDofPascalMartin.
REFERENCES
[1]M.Kass,[2]models,”I.contourC.GregInt.A.andJ.Witkin,J.ofComput.andD.Vis.Terzopoulos,,vol.1,pp.321–331,“Snakes:1988.
Activecontour
Trans.ImagemodelProcessing(nns-snake)N.Hwang,,vol.for“Acontourneural4,pp.1407–1416, ndingnetwork-basedofdistinctstochasticactive
1995.
features,”IEEE7
Y
0.2
HISTOGRAM (68 BINS)STEP FUNCTION (q=26)
CN(a)(b)
EUQE 0.1
OBJECT
RF 0(c)
(d)
BINS’ INDEX
Fig.pixels11.Exampleoflevelsnakeimageandinitialcontour.(b)Segmentationsegmentation.result(a)RGBobtainedimageonwith227×174huethecomponentwithaGaussianmodelfortheGLPDs.Segmentationobtainedthegrayonleveltheseconds).proposednonparametricintheHSVrepresentationstatisticaltechniquewith:(c)(computationaGaussiantimemodel,(d)objectinthe(e)Histogramhuecomponent.
(solidline)andestimatedGLPDs(dottedline):of21the.4(a)(b)
Fig.and12.(a)RGBimageacquiredwithaCCDcamera(inwithHSVinitialrepresentationcontour.(b)Segmentationresultsobtainedonthe320hue×240componentpixels)timethe:753-stageseconds).
strategywithandthetheproposedlevelsetnonparametricsnakeimplementationstatistical(computationtechnique(a)(b)(c)(d)
(e)(f)
Fig.RGB13.Examplesofsegmentationobtaineddisplayedimageonwiththehue214component×278pixelsoftheandHSVinitialwithrepresentationcontour.thepolygonal(computation(b)Finalsnake.contour(a)time:8.8seconds).(c)Graylevelsimagewith159×138pixelsandinitialcontour.(d)timeFinalbeen:2.2contourseconds).obtainedForabetteronavisualization,preprocessedtheversionof(c)(computationSegmentationincreased.(e)RGBimagewith492×283pixelscontrastandinitialoftheimageshas(computationresultstime:10obtainedseconds).
onthehuecomponentHinHSVrepresentationcontour.(f)