Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
8(a)(b)
(c)(d)
Fig.contours.14.(a),(c)RGBimages(192×156and321statistical(b)polygonalSegmentationtechniqueresults×398pixels)andinitialadaptedobtainedwiththeproposednonparametricseconds),onthehuecomponentinHSVrepresentationto3regionswiththe3-stagestrategy:time:11.(d)4seconds).
onthesaturationcomponentinHSVrepresentation(computation(computationtime:5.1[3]C.IEEEXuTrans.andJ.ImageL.Prince,Processing“Snakes,,vol.shapes,7,pp.359–369,andgradient1998.
vector ow,”
[4]G.stochasticStorvik,“ABayesianapproachMachineIntell.sampling,vol.and16,simulatedno.10,pp.annealing,”todynamic976–986,IEEE1994.
Trans.contoursPatternthrough
Anal.[5]A.deformableK.Jain,Y.Zhong,kshmanan,“Objectmatchingvol.18,pp.template,”268–278,ing
,[6]J.sequencesDiasandImaging,vol.ofJ.15,echocardiographicLeit ao,“Wallpositionpp.25–38,1996.images,”andthicknessIEEETrans.estimationonMedicalfrom
[7]M.aryFigueiredo,Visionestimation,”J.Leit andPatterninRecognition,IEEEao,andComputerA.K.Jain,PuertoSociety“AdaptiveRico,Conferenceb-splinesJune1997,pp.onandComputer
bound-724–729.[8]AdeformableKlein,FLee,468–482,1997.
splineandmodels,”AAmini,IEEE“QuantitativeTrans.Med.coronaryImag.,vol.angiography16,no.4,with
pp.[9]O.randomGermainandPh.R´efr´egier,“Optimalsnake-basedvol.21,luminanceno.22,pp.target1845–1847,onaspatially1996.disjointbackground,”segmentationOpt.Lett.ofa
,[10]C.basedChesnaud,Ph.R´efr´egier,andV.Boulet,“StatisticalTrans.segmentationPatternAnal.adaptedandMachinetodifferentIntell.,physicalvol.21,pp.noise1145–1157,models,”regionsnake-IEEE
1999.[11]S.growing,C.ZhuandA.Yuille,“Regioncompetition:unifyingsnakes,Trans.1996.
PatternandBayes/MDLAnal.andMachineformultibandIntell.,imagevol.18,segmentation,”region
no.9,pp.884–900,IEEE[12]N.toParagiosandR.Deriche,“Geodesicactiveregions:anewofdealPartialVisualwithCommunicationframepartitionandproblemsImageRepresentation,incomputervision,”paradigm
JournalandComputerDifferentialGraphics,Equations,vol.13,inImageno.1/2,Processing,pp.249–268,ComputerSpecialIssue2002.
Visionon[13]J.Scienti c,Rissanen,Singapore,plexityinStatisticalInquiry,World
[14]M.resentationFigueiredo,length2000.
criterion,”andJ.estimationLeit ao,andA.K.Jain,“ingImageB-splinesProcessingand,avol.minimum9,pp.1075–1087,description
[15]O.polygonalRuchandvol.26,no.snakePh.R´efr´egier,“Minimal-complexitysegmentationwitha
13,pp.adapted977–979,todifferent2001.opticalnoisemodels,”Opt.Lett.,[16]P.noiseMartin,Ph.R´efr´egier,F.Goudail,andF.Gu´erault,“In uenceofPatternmodelAnal.onandlevelMachinesetactiveIntell.contourthe
,vol.26,segmentation,”pp.799–803,2004.
IEEETrans.[17]N.segmentation:ParagiosandR.Deriche,“Coupledgeodesicactiveregionsforimage
Vision.June2000,alevelpp.set224–240,approach,”Dublin,inIreland.
EuropeanConf.incomputerIEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????
[18]N.methodsParagiosforandsupervisedR.Deriche,texture“Geodesicsegmentation,”activeInt.regionsJ.ofComput.andlevelVis.set
,[19]vol.J.metricKim,46,no.J.W.3,pp.223,2002.
curveevolution,”methodsFisher,forA.Yezzi,M.Cetin,andA.S.Willsky,“Nonpara-inimageIEEEsegmentationusinginformationtheoryand[20]2002,A.gradientHerbulot,vol.3,pp.Int.Conf.onImageProcessing.SeptemberS.797–800,Jehan-Besson,Rochester,M.Barlaud,N.Y.
Conf.onforAcoustics,imagesegmentationSpeech,andusingSignalinformationandG.Processingtheory,”Aubert,“Shape
.inIEEEInt.[21]pp.May2004,vol.3,E.[22]AnnalsParzen,21–24,Montreal,Canada.
S.Mathematical“Onestimationofaprobabilitydensityfunctionandmode,”
ofP.UniversityimageAwate,Statistics,vol.33,pp.1065–1076,1962.
neighborhoodsT.Tasdizen,andR.T.Whitaker,“Nonparametricstatistics
ofUtahSchoolforofunsupervisedComputing,texturesegmentation,”in[23]008T.M.,2005.
TechnicalReportUUCS-05-Coverand[24]interscience,A.Kullback-LeiblerElMatouatNewJ.A.Thomas,ElementsofInformationTheory,Wiley-andYork,InformationM.Hallin,1991.
,Orderpp.291–299,selection,SpringerstochasticVerlag,complexityInand
[25]ofA.E. niteDervieuxJ.Hannan,memoryand1996.
F.icalMethodselementmethod,”Thomasset,inFluidDynamicsinSeventh“Multi uid,W.Internationalincompressible owsbya
ReynoldsConferenceonNumer-[26]Eds.,S.dependentOsher1981,andvol.speed:J.141AlgorithmsA.ofSethian,LectureNotesinPhysicsand,pp.R.W.158–163.
MacCormack,based“FrontsonHamilton-Jacobipropagatingwithformulation,”curvature
[27]J.J.ofComputationalPhysics,vol.79,pp.12–49,1988.
Hamilton-JacobiA.Sethian,[28]GeometryV,vol.31,equations“Numericalpp.131–161,andalgorithmsconservationforlaws,”propagatingJ.ofDifferentialinterfaces:
[29]J..N.ofCaselles,Comput.R.Vis.Kimmel,,vol.22,andno.G.Sapiro,1990.
“Geodesicactivecontours,”Int.
forParagiosthedetectionandR.andDeriche,tracking“Geodesic1,pp.61–79,1997.
ofactivecontoursandlevelsets
[30]Anal.T.F.andChanMachineandIntell.,vol.22,movingno.3,objects,”pp.266–280,IEEE2000.
Trans.Pattern[31]Trans.S.ImageProcessingL.A.Vese,,vol.“Active10,no.22,contourspp.266–277,withoutFeb.edges,”2001.IEEE
regionsJehan-Besson,andvideodrivenM.Barlaud,andG.Aubert,“Dream2s:Deformable
segmentation,”byaneulerianaccurateminimizationmethodforimage[32]2003.
Int.J.ofComput.Vis.,vol.53,pp.45–70,F.toGallandmulti-regionandPh.objectsR´efr´withegier,different“Informationnoisemodels,”theory-basedOpticsnakeadapted
[33]29,H.no.14,pp.1611–1614,2004.
Letters,vol.levelK.setZhao,approachT.F.toChan,multiphaseB.Merriman,motion,”p.S.Osher,Phys.“A,variational
[34]179–195,L.segmentationA.Vese1996.
vol.127,pp.andusingT.Chan,the“Amultiphaselevelsetframeworkforimage
[35]Vis.D.L.,vol.MumfordandShahmodel,”Int.J.ofComput.Chopp,50,“Computingno.3,pp.271–293,minimal2002.
[36]Jour.F.contrastGoudail,ofCompt.Ph.R´Phys.efr´egier,,vol.and106,G.pp.surfacesDelyon,77–91,via“Bhattacharyya1993.levelsetcurvature ow,”
distanceasa
[37]Opt.J.Soc.parameterforstatisticalprocessingofnoisyopticalimages,”serW.Goodman,Am.A,Statisticalvol.21,no.Properties7,pp.1231–1240,oflaserSpeckle2004.
Patterns,chapter
[38](TopicsSpeckleA.K.Jain,inAppliedandRelatedPhenomena,pp.9–75,Springer-VerlagFundamentalsPhysicsVol.9),Heidelberg,1975.
[39]informationS.HandbookJ.SangwineandsystemandR.sciencesofdigitalimageprocessing,PrenticeHall
E.serie,NewJersey,1989.
[40]spaces,D.pp.,chapter76–82,RepresentationsN.Horne,ChapmanandHall,ofcolourTheColourimagesImageindifferentProcessing
coloursegmentedMartin,algorithmsnaturalC.Fowlkes,imagesD.andTal,itsandapplicationJ.London,Malik,“A1998.
databaseofhuman
ComputerVisionandmeasuring,July2001,ecologicalvol.2,pp.statistics,”toevaluating416–423.
inProc.8thsegmentationInt’lConf.