Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
6
)
%(PMNABHATTACHARYYA DISTANCE
Fig.results7.ANMPastechniqueobtainedGammawiththewithafunction3-stagetheparametricoftheBhattacharyyadistanceBforsegmentationstrategyonstatisticalapproachandtheproposedrealizationsandNonparametricandPoissonstatisticalthesegmentationGLPDs.Eachapproach.isANMPtheimageofFig.2awithGaussian,(b)performedhasbeenParametricwithestimatedon20noisestatistical
thelevelapproach.
setsnake.(a)(a)(b)(c)(d)
Fig.line)8.(a)Syntheticimages(115×83pixels)obtainedandproposedwithGammaGaussian(second(b)line)andnoisesGammawith(c)Bperturbed=0.29.SegmentationwithGaussianresults( rstusedandapproachtheinitialwithcontourthe3is-stagetheonestrategyofFig.(d).models2b.
TheforlevelthesetGLPDssnakehasandbeentheFirst,letusconsiderthecaseofgraylevelsintheimagesthatthatarepurposedistributedoneconsidersaccordingdifferenttotheexponentialnoisyversionsfamily.ofFortheimagebutions.ofTheFig.2aevolutionwithGaussian,oftheANMPGammaasorafunctionPoissonofdistri-theBhattacharyyadistanceBisshowninFig.7.20realizationsofdifferentthescenevalueswereofgeneratedB.Theobtainedforeachimagesnoisehavemodelbeenandseg-formentedeitherwiththeparametricstatisticalapproachorwiththeofthe3-stageproposedstrategy.approachFig.7areillustratessimilarthatforthethethreeperformancestypesofpdf.nonparametricMoreoverstatisticaltheparametricapproachstatisticalofthispaperapproachleadtoandsimilarthevaluesoftheANMPwhenB≥0.3.IfB<0.3theproposedapproachapproachprovidesthatalsoworseleadstoresultsdegradedthantheperformance.
parametricstatisticalClearly,ournonparametricmethoddoesnotrelyonagivenmodel.thatcanThisproduceisaverymajorbadadvantageresultsiftheoverparametricparametricmodelmethodsdoesnoteffectcorrespondandcomparestothebothnoiseapproachinthedata.onaFig.synthetic8illustratesimagewiththisdifferentnoisedistributions.
paperInconclusion,withthe3-stagethenonparametricstrategyleadsapproachtosatisfactoryproposedresultinthisincomparisontotheonesobtainedwithaparametricmodeladaptedrobustness.
tothegraylevel uctuationsbutwithastrongerIEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,
????
E.Realimages
amplesWeproposeobtainedtowithshowtheinproposedthissubsectionnonparametricsegmentationstatisticalex-techniqueandthe3-stagestrategyondifferenttypesofrealimages.IntelXeonThe2.segmentations8GHZ(Linuxhave2.4,beengcc2performed.96)with900withMoaPCofRAMandthecomputationaltimesareprovidedinthecaptionsofthe gures.
tion.WeIn rstFig.show9ctheresults nalobtainedcontourobtainedwiththelevelonasetrealimplementa-SARimagecorruptedwithspecklenoiseisrepresented.Thesegmentationresultnoise[37]onaislasershownilluminatedinFig.9f.imageInFig.perturbed10,onewithcanspeckleseethesegmentationFig.10atheresultresultonobtainedavideowhentexturedthetechniqueimage.Weisshowappliedinontheimage.Onecanseeinthatcasethatthetechniqueisinef cientnonhomogenoussincetheregions.presenceHowever,ofshadowsifoneintheconsidersimagetheleadsnewtoimagefde nedbyf(x,y)=|FVFVandFHaretheRoberts s lters(x,y)[38]|2+|FHde ned s(x,withy)|2wherea3×3pixelneighborhoodsand istheconvolutionoperator,oneobtainsanimagewithtworegionsmorehomogenous.Indeed,continuousthevariationgradientoperatorofthegrayallowslevels.onetoThesuppresssegmentationlinearresultisshownonthisinpreprocessedFig.10dandimageonewithcantheseeproposedinFig.technique10bandFig.10cthatparametricstatisticalapproachesdonotleadtosatisfactoryacquiredwithsegmentations.aCCDcameraAnalogousisshownresultinFig.ona11RGBwhereimagetheconsideredpreprocessingnowsimplyconsistsinextractingthesegmentationhuecomponentexampleintheobtainedHSVrepresentationonthehuecomponent[39].AnotherofaRGBimageisshowninFig.12.
WeshowinFig.13segmentationresultsobtainedwithapolygonalcomponentsnakeintheadaptedHSVrepresentationtotworegions.areResultsshownoninFig.theHue13bandonaFig.gray13f.levelInimageFig.13d,whichthesegmentationhasbeenpreprocessedhasbeenobtainedinordertoobtainanewimagegde nedbyg(x,y)=s(x,y) s(x+1,y+1)inwhichthedifferentregionsaremorehomogenous.WeshowinFig.14segmentationresultsobtainedwithaSegmentationpolygonalsnakeresultsadaptedhaverespectivelyto3regionsbeenonobtainedRGBimages.ontheHueonthecomponentsaturationincomponenttheHSVrepresentationintheHSVrepresentationinFig.14bandinFig.14d.TheimageinFig.14cisextractedfromtheBerkeleyDatasetofnaturalimages[40].
Theseresultsshowthattheproposedapproachallowsonetodealwithverydifferenttypesofimages.
IV.CONCLUSION
Wehaveproposedanonparametricstatisticalsnakebasedonthethegrayminimizationleveldistributionsoftheofstochastictheobjectcomplexityandofthebackgroundandwhereareapproximatedbystepfunctionswhoseparametersarees-timatedtominimizeduringathecriterionsegmentationwithoutprocess.freeparameterThisapproachtobetuned
leads
…… 此处隐藏:2886字,全部文档内容请下载后查看。喜欢就下载吧 ……