手机版

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam(3)

发布时间:2021-06-06   来源:未知    
字号:

Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image

0}[25],[26],[27],[28],[29],[30],[12],[31].Thiscontourmodelallowstosegmenttheimageintworegions(i.e.R=2)notthenecessarilynumberofsimplynatsrequiredconnected.tocodeForsuchthecontourcontourmodels,canbeapproximatedby[16]

LSC=log(8)|Γ|,

(7)

where|Γ|isthelengthinpixelunitsofthecontour.

Foranuniqueandsimplyconnectedobjecttosegmentintheimage,itcanbeadvantageoustoconsiderpolygonalcontourmodelsofthestochastic[10],[15].Itcomplexityhasbeenshowncanlead[15]tothatef cienttheminimizationtechniquewithoutgrayleveltuning uctuationsparameterfollowintheaparametricoptimizedprobabilitycriterionwhendensitythefunction(pdf)thatbelongstotheexponentialfamilyandthatisadaptedhasbeentogeneralizedthe uctuationstomultiregionpresentinthesnakeimage.inThis[32]approachandthenumberofnatsneededtocodesuchamultiregionpolygonalcontourcanbeapproximatedby

PC=nlogN+(n+1)logp+p[2log(2e)+log(m

xwherem x(respectivelym y)isthemeanvalueofhorizontalm y)](8)

(resp.vertical)distancesbetweenadjacentnodes,nisthenumberandpitsofnumberEulerianofgraphssegments.

ofthemultiregionpolygonalsnakecontourOfcoursemodelsthissuchapproachassplinecoulddescriptorsbegeneralizedforexampletoother[14]orsakemultiregionofsimplicity,level,setthistechniquespaperfocuses[33],[34].onlevelHowever,setandforpolygonalsnakesforthesegmentationintworegions.Themoreknowngeneralbutarbitrarycaseofnumbermultiregionofregionspolygonalwillbealsosnakesconsideredwithaasanillustration.E.Optimizationstrategy

theThestochasticsegmentationcomplexityofthe image.ThisiscriterionobtaineddependsbyminimizingonthecontourΓ(i.e.,theparameterofinterest)andontheqparametersdistributionajthatareintroducedforthedescriptionoftheandqoftheprobabilitiesstepfunction)Pu.canThesebeparametersobtainedby(Γminimizing,a1,...,aq .Forthatpurpose,Γisestimatedbyminimizing with xedaj.Then,theparametersajandqaredeterminedbyminimizingiteratedifnecessary.

forthegivenvalueofΓ,andtheprocessis1)Levelsetcontourestimation:Inthissubsection,theimplementationoftheminimizationalongΓisdescribed.Thistechniquerefertopublishedisstandardworksinlevelforfurthersetimplementation,details[26],[31],thus[16].weTheequation φ(x,yevolution)

isgiven[26]bythepartialdifferentialequation3

itis

thesumof3termsF Γ.S(s(x,y))=

AccordingtoEq.1,S

Γ

andFCLS(s(x,y))=

LSC

N

insteadof(q 1)log

| φ|

.Usingtheresults

in[16],onecanshowFS(s(x,y))=

thattheexpressionforFS(s(x,y))is

qj=1{H(n1(j)) H(nH2(j))

+ (n1(j))(10) n2(j)[Rj(s(x,y)) n2(j)]

,whereH(z)= zlog(z)andnu(j)=

Nu(j)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)