Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following $C^{\ast}$-algebraic setting: A given hermitian dissipative mapping $\delta$ is densely defined in a u
(b)Supposebothxandx belongtoD(δ).Thenδ(x )=δ(x) .
ThefollowingresultsarecorollariestotheproofsofTheoremsIV.2andVII.1.CorollaryVII.2.LetAbeaC -algebrawithunit11,andletδbecompletelydissipativeinAwithdensedomainD(δ),11∈D(δ),δ(11)=0.
(a)IfA B(H)forsomeHilbertspaceH,thenthereisasequenceofcompletelypositive
mapsEn:A→B(H),En(11)=11,suchthatthefollowingnorm-convergenceholds:
En(x) →x
and
n(En(x) x) →δ(x)forx∈D(δ).(ii)forx∈A,(i)
(b)IfD(δ)ishermitian,thenδishermitianaswell,i.e.,δ(x )=δ(x) forallx∈D(δ),
anditisthenpossible,foreachn,tochooseEntobe1–1withdenserange.
(c)LetδandAbeasin(a),andletπ:A→B(K)bearepresentationofAinaHilbert
spaceK.ThenthereexistsasequenceEn∈CP(A,B(K))suchthatthefollowingnormconvergenceholds:
En(x) →π(x)
and
n(En(x) π(x)) →π(δ(x))forx∈D(δ).(ii′)forx∈A,(i′)
Proofs.WeconsideragaintherangesubspaceS=Ran(I δ)={x δ(x):x∈D(δ)}.AsintheproofofTheoremIV.2notethatR=(1 δ) 1:S→Aiscompletelycontractive,andR(11)=11.IfAisconsideredasasubalgebraofB(H),whereHistheHilbertspaceoftheuniversalrepresentation,thenthereis,byArveson’sextensiontheorem[2,Theorem
1.2.9]acompletelypositivemappingE:A→B(H)suchthat
R(s)=E(s)foralls∈S.(VII.4)
Ifforeachn=1,2,...theoperatorδisreplacedbyn 1δ,thentheaboveargumentyieldsacompletelypositivemapEn:A→B(H)suchthatEnisanextensionofthepartiallyde nedoperator(I n 1δ) 1.