Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following $C^{\ast}$-algebraic setting: A given hermitian dissipative mapping $\delta$ is densely defined in a u
Then
Cnπ(x) 2= En(x) 2=ω (En(x) En(x))
≤ω (En(x x))=ω(x x)= π(x x) | = π(x) 2,
wherethenormisthatofK,andwheretheSchwarzinequalityisappliedtoEn.ItfollowsthatCniswellde ned,andthatitextendsbylimits(inK)toacontractionoperator,Cn∈B(K), Cn ≤1.
ByCorollaryVII.2(c)(ii′),wethenhave
π(δ(x)) =limn(En(x) π(x) )
=limn(Cn(π(x) ) π(x) )
=limn(Cn I)π(x)
Asaconsequence,thefollowingquadraticformonK:
π(x) ,π(y) →lim n(Cn I)π(x) |π(y) K
iswellde ingthecontractivepropertyofCn,itiseasytoshowthatthisquadraticformisgivenbyadissipativeoperatorL;thatistosay
lim n(Cn I)π(x) |π(y) = Lπ(x) |π(y) .
Sincethelimitontheleftisalsoequaltotheinnerproduct
π(δ(x)) |π(y) ,
theidentity(VIII.2)ofthetheoremfollows.forx∈D(δ).
IX.ACONDITIONFORCOMPLETEDISSIPATIVENESS
Inapplications[18,24,33]itisoftenpossibletodeterminethederivationδinaparticularrepresentation.IfmoreoverthederivationisknowntobeimplementedbyadissipativeoperatorinthecorrespondingHilbertspace,thenitfollowsinspecialcasesthatδitselfiscompletelydissipative.
1andletδbeadenselyde nedtransforma-TheoremIX.1.LetAbeaC -algebrawithunit1
tioninAsuchthat11∈D(δ)andδ(11)=0.LetωbeastateonAsuchthatδisimplemented