Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following $C^{\ast}$-algebraic setting: A given hermitian dissipative mapping $\delta$ is densely defined in a u
byadissipativeHilbert-spaceoperatorLintherepresentationπω.Assumemoreoverthatπωisfaithful,andthatL =0,where denotesthecyclicvectorintheGNSrepresentation.Thenδiscompletelydissipativeonitsdomain.
Proof.LetH=HωbetheHilbertspaceofthefaithfulrepresentationπωandletLbetheoperatorinHwhichisassumedtoexist,satisfyingconditions(i)and(ii)below:(i)ThedomainofLisπω(D(δ)) ,andLisadissipativeoperatorintheHilbertspaceH;(ii)Limplementsδintherepresentationπω,whichisequivalenttotherequirementthat
L isde nedonπω(D(δ)) ,andthatonthisdomainthefollowingoperatoridentityisvalid:
π(δ(a))=Lπ(a)+π(a)L foralla∈D(δ).(IX.1)
Weshow rstthatδmustnecessarilybeadissipativeoperator.Indeed,byPhillips’s
ofLexistswhichisthein nitesimalgeneratoroftheorem[30,Thm.1.1.3]anextensionL
astronglycontinuoussemigroupS(t)ofcontractionoperatorsintheHilbertspaceH.WenotethatS(t)implementsasemigroupσ(t)ofpositivemappingsinB(H),givenby
σ(t)(A)=S(t)AS(t) (IX.2)
forallt∈[0,∞)andA∈B(H).Bysemigrouptheorywenotethatthegenerator(ζsay)ofσ(t)isdissipative,sothefollowingestimateholds:
A αζ(A) ≥ A
forallα∈[0,∞)andA∈D(ζ).
Ifδωdenotestheoperatorπω(a)→πω(δ(a))withdomainπω(D(δ)),thenweclaim(easyproof)that
δω(A)=ζ(A)forallA∈D(δω),(IX.4)(IX.3)
andtheknownestimate(IX.3)abovethenimplies
πω(a) απω(δ(a)) ≥ πω(a) (IX.5)
fora∈D(δ)andα∈[0,∞).Butπωisfaithful(andhenceisometric),so(IX.5)isinfactequivalenttothedissipationestimate
a αδ(a) ≥ a