Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following $C^{\ast}$-algebraic setting: A given hermitian dissipative mapping $\delta$ is densely defined in a u
onE,andwemayde nefunctionalf
(η(y))1F1(y)=F0(y)+f1fory∈M.(V.3)
WeclaimthatF1isoneoftheextensionsconsideredintheZorn-processwhichwasdescribedabove.ButF0≤F1,andF0=F1,contradictingthemaximalityofF0—andso,wemusthavex=0,concludingtheproofof(V.2).(Notethatin(V.3),insteadoftheidentityelement11ontheright-handsideoftheequation,wecouldhaveusedanynonzeroelementinM+.ThecorrespondingF1-transformationwouldproperlymajorizeF0,andhaveitsrangecontainedinM,sincetherangeofF0fallsinM.)
SinceF0iscompletelypositive,wehave,inparticular,F0(x )=F0(x) .So,toestablishtheidentityN(F0)={x∈M:F0(x)=0}=0,itisenoughtoshowthatthehermitianpartofN(F0)iszero.Sincewehavealreadyconsideredpositiveelements,itonlyremainstoconsiderx=x ∈N(F0)satisfyingx∈/S.Chooseapositiverealnumberksuchthatxk=x+k11∈M+.WethenhaveF0(xk)=kandxk∈/S.Itispossible,therefore,by
onE=M/Ssatisfyingf (η(xk))=l>0.Krein’stheorem,tochooseapositivefunctionalf
(η(y))1Thende neF2(y)=F0(y)+f1fory∈M.Itisasimplemattertocheckthat
ischosenpositive.FinallyF2isoneoftheZorn-extensions.Indeed,F0≤F2sincef
F2(xk)=F0(xk)+l11>F0(xk).ThiscontradictiontothemaximalityofF0concludesthe
1isde nedonF0(M)={F0(x):x∈M}.proof.SinceN(F0)=0,theinverseF0
WeproceedtoshowthatF0(M)isinfactdenseintheσ(M,A′)-topologyofM:Firstnotethattheextensionproperty(V.1)forF0translatesinto:
F0(x δ(x))=xforx∈D(δ),(V.4)
andthecorrespondingtransposedmappingsinA′thereforesatisfy:
′(I δ′)F0=I(theidentityoperatorinA′).(V.5)
′HenceF0is1–1,andthedesireddensityofF0(M)followsfromthebi-polartheoremappliedtotheA′–Mduality.NotethatinfacteveryextensionofRhasdenserange,becausecondition(V.5)issatis edforthemostgeneralsuchextension.
=I F 1isthereforeanextensionSinceF0isanextensionof(I δ) 1itisclearthatδ0
ofδ.