Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following $C^{\ast}$-algebraic setting: A given hermitian dissipative mapping $\delta$ is densely defined in a u
istheassociatedlocalHamiltonian,wherein(I.1),thesummationisoverall nitesubsetsXofΛ.SinceAΛ1andAΛ2commutewhenΛ1∩Λ2= ,itfollowsthat
δ(a)=lim[H(Λ),a]Λ(I.2)
iswellde nedforalllocalobservablesainthedense -subalgebra
A0=
Λ nAΛinA
where[·,·]in(I.2)denotestheusualcommutator[b,a]:=ba ab.Ruelleprovedthat,ifΦistranslationallyinvariant,andif,forsomeλ>0,
∞
n=0enλsups∈L s∈X ncardX=n+1 Φ(X) <∞,(I.3)
thenthe -derivationδde nedin(I.2)isthein nitesimalgeneratorofaone-parametersubgroupof -automorphisms{αt}t∈R Aut(A),whichthensatis es
αt(a)=limeitH(Λ)ae itH(Λ)
Λ L(I.4)
foralla∈Aandt∈R,i.e.,itisapproximatelyinner.Thismeansthat,ifa∈A0,then
limt 1(αt(a) a)=δ(a).t→0t=0(I.5)
Moreover,δis,whenextendedfromA0,aclosed -derivation,inthesensethatthegraphofδisclosedinA×A.ButifΦisnottranslationallyinvariant,orif(I.3)isnotknowntohold,thennosuchconclusioniswithinreach,andtheissueofextensionsofδarises.We
ofδtoageneratorofaone-parametergroupofautomorphisms,thenaskifsomeextensionδ
orasemigroupofdissipations(seedetailsbelow),exists.
II.DEFINITIONSANDTERMINOLOGY
LetXandYbeBanachspaces.ThenthespaceofboundedlinearoperatorsfromXtoYisdenotedL(X,Y).Theconjugate(i.e.,dual)BanachspacetoXisL(X,C),andisdenotedX′.IfHisaHilbertspace,theC -algebraofallboundedoperatorsonHisdenotedB(H).LetLbealinearsubspaceofB(H)whichisself-adjointandcontainstheidentityoperatorI.WiththeorderinheritedfromB(H),thesubspaceLgetsthestructureofan