关于公交车调度问题
摘要
随着国民生活水平的提高,公共交通问题也日益重要起来,而公交车调度是制约公共交通的重要因素。根据题中所给的数据,建立数学模型对公交车调度问题进行分析。
对于问题一:首先,根据城市中某条公交线路各个时段的客流信息,得出了公交车公司的最大客容量,发车车次,发车时间间隔。运用MATLAB编程,计算出各个时段的最大客容量,在满足公交满载率的情况下得出日最少发车车次为460次,其中上行线230车次,下行线230车次,用LINGO计算出发车时间间隔,并给出公交车发车时刻调整表。基于公交车从起始站运行到终点站的用时为44分钟,且时间间隔应为整分间隔,可算出早高峰所需最少车辆为58辆。
其次,一个合理的公交车调度方案应该考虑公交公司的最大利益和乘客的满意度两个方面。故建立了满意度分析模型,在此模型中,运用了层次分析法。对满意度进行了分析计算。结合整数规划模型中的结果可求得满意的分析模型中公交公司与乘客双方之间满意度,并且使二者和达到最大,同时双方满意度之差最小,得到上下行的最优满意度(0.8688,0.8688)。
最后,综合了公交车公司的最大客容量、发车车次、公交公司满意度等方面因素,且以公交公司所发的车次最小为目标,乘客的等待时间和公交载客率为约束条件提出了整数规划模型。此模型是把公交车调度问题抽象成数学模型来表达,从考虑发车车次最小出发,满足各项约束条件,寻求最优解。运用LINGO编程,可计算出公交公司日发车车次最小值为461次。因此该解法是在满足乘客的情况下求的最优解。乘客的等待时间的满意度为100%,但是从舒适度考虑,上行和下行分别有11和9人不满意。这个结果为满意度模型和整数规划模型的中间情况,故此模型的建立是合理的。
关键词:整数规划 满意度 MATLAB LINGO