匀性随原子热运动在不时发生着变化的现象。
5. 根据图1-10及式(1-7)说明为动力学粘度η的物理意义,并讨论液体粘度η(内摩擦阻力)与液体的原子间结
合力之间的关系。
答:物理意义:作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dVX/dy的比例系数。
k Cexp(U/kBT)
通常液体的粘度表达式为。这里B为Bolzmann常数,U为无外力作用时原子之间的结合
能(或原子扩散势垒),C为常数,T为热力学温度。根据此式,液体的粘度η随结合能U按指数关系增加,这可以理解为,液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高。
6. 总结温度、原子间距(或体积)、合金元素或微量元素对液体粘度η高低的影响。
答:η与温度T的关系受两方面(正比的线性及负的指数关系)所共同制约,但总的趋势随温度T而下降。 粘度随原子间距δ增大而降低,与 成反比。
合金组元或微量元素对合金液粘度的影响比较复杂。许多研究者曾尝试描述二元合金液的粘度规律,其中M-H
(Moelwyn-Hughes)模型为:
3
m
H
(X1 1 X2 2) 1 2
RT (1-9)
式中η1、η2、X1、X2 分别为纯溶剂和溶质的粘度及各自在溶液中的mole分数,R为气体常数,Hm 为两组元的混合
热。按 M-H模型,如果混合热Hm为负值,合金元素的增加会使合金液的粘度上升。根据热力学原理,Hm为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。M-H模型得到了一些实验结果的验证。 当溶质与溶剂在固态形成金属间化合物,由于合金液中存在异类原子间较强的化学结合键,合金液的粘度将会明显
高于纯溶剂金属液的粘度。
当合金液中存在表面及界面活性微量元素(如Al-Si合金变质元素Na)时,由于冷却过程中微量元素抑制原子集团
的聚集长大,将阻碍金属液粘度的上升。通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高。 7.过共析钢液η=0.0049Pa﹒S,钢液的密度为7000kg/m3,表面张力为1500mN/m,加铝脱氧,生成密度为5400 kg/m3
的Al2O3 ,如能使Al2O3颗粒上浮到钢液表面就能获得质量较好的钢。假如脱氧产物在1524mm深处生成,试确定钢液脱氧后2min上浮到钢液表面的Al2O3最小颗粒的尺寸。
2g( m B)r
9 答: 根据流体力学的斯托克斯公式:,式中: 为夹杂物和气泡的上浮速度,r为气泡或
夹杂的半径,ρm为液体合金密度,ρB为夹杂或气泡密度,g为重力加速度。
2
r
9
2g( m B)
1.34 10
4
m
分析物质表面张力产生的原因以及与物质原子间结合力的关系。
答:表面张力是由于物体在表面上的质点受力不均所造成。由于液体或固体的表面原子受内部的作用力较大,而朝
着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。因此,物体倾向于减小其表面积而产生表面张力。
原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影响因素不仅仅只是原子间结合力,与上述
论点相反的例子大量存在。研究发现有些熔点高的物质,其表面张力却比熔点低的物质低,如Mg与Zn同样都是二价金属,Mg的熔点为650℃,Zn的熔点为420℃,但Mg的表面张力为559mN/m;Zn的表面张力却为782mN/m。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。
9. 表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点间结合力的大小有何关系?
答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,即界面张力与界面自由能的大小和单位也
都相同。表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。广义上说,物体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。
当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质点间结合力的大小成反比,两相质点间结
合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。
10.液态金属的表面张力有哪些影响因素?试总结它们的规律。