B=RB²/KB²=3.4min
对C有:RC= VC/AC=1.2cm
C=RC²/KC²=2.57min
对D有:RD= VD/AD=1.26cm D=RD²/KD²=3.06min
因此最后凝固部位为底座中肋B处,凝固终了时间为3.4分钟。
7. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形
(背面均匀焊透)。采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?
解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电
弧热无法及时散开的缘故;
相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。
8. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并
提出相应工艺解决方案。 解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,
因此会出现一定长度的未焊透。
(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复
到正常焊接规范。生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。
第三章 金属凝固热力学与动力学
试述等压时物质自由能G随温度上升而下降以及液相自由能GL随温度上升而下降的斜率大于固相GS的斜率的理由。
并结合图3-1及式(3-6)说明过冷度ΔT是影响凝固相变驱动力ΔG的决定因素。
答:(1)等压时物质自由能G随温度上升而下降的理由如下: 由麦克斯韦尔关系式:
dG SdT VdP (1)
dy x
F F
dF(x,y) dx
x y y并根据数学上的全微分关系:
G G
dG dT dP
T P P T
得: (2)
G
S,
T P
G
V
P T
比较(1)式和(2)式得:
G
dG SdT dT
T P
等压时dP =0 ,此时 (3) 由于熵恒为正值,故物质自由能G随温度上升而下降。
(2)液相自由能GL随温度上升而下降的斜率大于固相GS的斜率的理由如下: 因为液态熵大于固态熵,即: SL > SS 所以:
>
即液相自由能GL随温度上升而下降
GS的斜率 。 (3)过冷度ΔT是影响凝固相变 力 ΔG 的决定因素的理由如下:
右图即为图3-1
V表示液-固体积自由能之差 其中:
Tm 表示液-固平衡凝固点 从图中可以看出:
T > Tm 时,ΔG=Gs-GL﹥0,此时 固相→液相 T = Tm 时,ΔG=Gs-GL =0,此时 液固平衡 T < Tm 时,ΔG=Gs-GL<0,此时 液相→固相 所以ΔG 即为相变驱动力。
G