In this work we study complexity classes in monotone computation. Our main contributions are the following: ffl A consistent framework for monotone computation, including monotone analogues of many standard computational models. We define monotone simulati
hCptae r1
ntIoductiorn1.1O uliteTnh eoutstnading rpbleo omfcom upttionaa comllpextiy tehro yi stond xpeilcit Boloae fnuctinnso whichare pr vobayl hra tdoc mopue by tsme roeaonasle bodelmof com puattion .lAthoug funhctois rnqeiurng iexonpentali erousrescar knewo tonbe p lneituflby e elmentay rocuntig nraumegnst3 8],th eprolbem of ctaallu pyovirngsuch lo we bounrd sfr explicit ofnucionts,say fo rfuctniosn omputaclbei nNP is, ucm horm edicul . For tufntcino is NP nocputmed b cyiruits ocerv caomlptee baiss o bfinayr atges, hetbe st nown koler bouwnd sn cirouct siize ae ornl ylniae,r na dht eestb nkwnol owe bornusd n coiructi edth aper oln loygraihmtci. Nevetreleshsin t e hlst decada ethereha sebn esgini cna progrets si thn eontcxet f roseritctde omedlso focmutaptoni. The wto ypet sf resotirticon usuallys oncsiered dre aobuned-ddpet chircuti snd aonotmon ciercuis. Itnt hiswork we occnntratee no the monotoe resnrictiont,a d nw exteend het onmtoon reesrittcoi nto toehrm odls eof cmopuattio nebides csirucits.W esrt o allf ima t oigve caosistenn tomontone cmopleityx fraemwor kof descrribng wiht hasa arlaey bdeend oe, nandfor sgguesintgn weprob emsl. I tnihs mnotooe fnarewmrk oe nwdma nypara lles ltogenera ln nmoootonnec mpoexliy, antdwe xetne dmnooonet ocplemitx fryo tmehcir ucit mdeo lt otoher radititnol acomutpatoina moldles. eWsh ow tat hmna of yte hamilfai srmuliatoin echtnqiuesfrom g enrea colpmleity xra en ifctamo ntono,e 11