In this work we study complexity classes in monotone computation. Our main contributions are the following: ffl A consistent framework for monotone computation, including monotone analogues of many standard computational models. We define monotone simulati
uifnromL b ytehu es f unoiersavltr veraas slqueenecs, o si maty ese mhta tewha vep ovrn nethoingnew .H weovr, teehn xetre slu matke si tlcae trhatthe pr esnter suleti in fasc stritctlys trnoger thn ahe tmNL6 m=N 1 sepaCrtioa.mNL n= co-mNL6: I order to nde necom plmenteation snseblyifo ronomtnoe Boolan funcetions,let s uedne co?f ( )x=:f (:x) (se elaos scteoi n.2).1 I it shen cleat rhat tLm co-m= by deMLrgona' lsas,wand smilariy forl oher ANDt/ORs mmetric ycircitu clasess. O nteho ter hhnd ita urtn ostu tat h aismpe exltnsien ofo teh agrmuen tof aKcrhmerand Wi dergsnowi l prlveo htt ac-omL Nancot nocpumte sutcno.
nThsis ouhdlbe cmopraed t toe hrsuet NLl= c -NLof rom gneealr ocplmxitye.As acnoseuencq eo tfish espartiaon,i ftollow shta tthes mulatioi ntcenhqiu eof mImrman ena dSelzepscnyieca nntoin gnerea be leprlacedb yso m emnotone osmulaiitn.o? mBWB= mNC 1P: oTco pmetl teehl et half of fgur 1e1-, weask wheth r ethreeis am notono aenaoglueof he tismualiot tnceniqhu ofe Barringtn.o eWc njocetuertha thtree i son usc hanlaogue,i e. .hat mBtWBP 6 mNC 1=.
uSporptignthi scon ejcutr ew erpve oniCh aptr e4 htta,ni certaan tiehcinal csnse,ethe r isen omo onotn anelaougeof Barirntgon'sg aget. dn tOe hthor eahd nhetr ceulod cnoceiavby lebsom reaicdallyd irent esmuilatonitec hnqie, us toeh ocnjecutr eeramni opsen.Th su ewha vea mch ubteetrma p oflow-le vlem notoon comelpxitey,ut tbhtama pis st li falrfr o mcmolepe, tands oem emairnni prgbolems ar esugegtse din Chapetr .6In patirulcar ti ppearsa httas omen ewtec nhiqesu ae reednedto reoslev ht easl cotnejtucr.e e Wlcsoeth s cihpaet withr the olfolwig psycnhlooigcalr taehrt ha mnthametacil oabervastoni: mnooonetm thoesd ae rniuitivt.eFor xampele i,f e wsk a astudet notr deuc one eroplemb o atonteh, re ho rhsei smo erli key tolco e um pithwa mnotooen rdecuiot,ni fno ei svaiaable. lTis hi salrelygwhy th reselutsof B arrintong na Idmemmrna are s\sorurisinp.g" t Isial s oprbabloy wy hmso oftth ceaslisal scimlauitn oechtnqiue is fantc crarythr oguh i tne mohotnoen asec.
1