In this work we study complexity classes in monotone computation. Our main contributions are the following: ffl A consistent framework for monotone computation, including monotone analogues of many standard computational models. We define monotone simulati
oCtnnest In1troudciton11. .2 1.1 13. 4Oultne .i. . . .. . . .. .. .. . . . mrl Moaotnno eomCutption .a .. . A. rBeifHi stroyof M ootnno Comelexptiy .O u roCnrtbuitins o.. . . . . .. .. . . . . . . .. . .. . . . ... . .. . . .. . .. . . . . .. .. ... .. . . . . .. . .. . . . . .. ... . . ... . . . . ... . . .. . . . . . ... . .. . . .. . ... .. . . . .. . .. ... .. .. . .. . . .. . . .. . ... . . . .. .. .. . .. . . . .. . . . ... . . . .. .. . . . . . ... . ... . . . .. .. . . .. . . .. .. . .. .. . . . . .. ... . . . ... . . .. .. . . .. . ... . . ..
111113 411 5
2onotoMne oCpmelxti
2y1 Mo.ntone ounFticno ansdC ompleentsm. . . . ... ... 2. 2M notono Modelse. . . . . ... . . . . . . ... . . . .. .2.12 Moonton eCricutsi .. . . . . .. .. . . . . . . 2.2.. Mono2toneN noetermdiinsitc Barnchnig Porragm s.2.23 onMtono eonNdeertinmistic Atoumat a . . .. . ..2.4 2Montoon Nenoetderimistic Turnng Miachies .n . 2.3M onoote Cnoplmxeit yClsaes . . . . s ... . .. .. .. . 2.4 Montoon Seiulmtianso. .. .. . .. .. . ... . . . .. 2.5 TirivalM oontne Colsaess. .. . . . . .. . .. .. .. ..6 2Mootnon eeRudticnos . ... ... . . ... . . .. . .. 2 .7Monot no Ueniormitf y . . ... . .. . . .. .. . . ... .27.1 niUorf mCrcuitis. . . . .. ... . . . ... . . . .72.2 Uniofrm Rdeutcois .n. . . . . . .. .. . . .. .1
902 1 212 2 22 34 2422 3703 23434 5
33Mo notoenN onetedmrnisiic Ltogspaec
3.71 Caslicsl Raseltsu. . .. . . .. . . ... . . . . . . ... . .. ... . .. . . 393