In this work we study complexity classes in monotone computation. Our main contributions are the following: ffl A consistent framework for monotone computation, including monotone analogues of many standard computational models. We define monotone simulati
rtcuutre i Mnnootoe nompCexlityby MchilengaloeGr gni
iSumbttied t ohetD eprtamnteo faMhematitcs n Aporil30, 9911,n iaptiral fl ulmlnet foth reequiemrnte sor the fdgreeeo f Dotorc fo Phioslophy
Abtrsact
nIt ih wosr wek stdu ycoplemxit yclassse ni omnotone ocmutptiona .Oru main cotribuntoins aret h eoflloingw A: ocnistsent frmework aofrmo ntooenc mputatoio, innlucindgmo noone tanlogues oa fanmy tasdard conmptautinoal omels. de Wde n eomonotnesimu atiolsn,a d nhsw ohat mtny (abut ont la) lfot ehf amliira imslutiano sformg enear lcopleximtyth ero aryei n fct manoooten .hTe saerhcf r porvobal nyno-mnootno seiulamtoni sa a ressarehc gol ai monononet coplemitx.yOur nweexa plme s theif llowong: ihtesimul tioa nethcinues oqf mmIemrn ana Szedlpcseneiya e rporvbay noln-omntoneo, sncei ew cn aepsraae mtL N(onotome nondnteemrnisitc iolgrithaim cpsace)from o-cNmL A.otnehr espraaiont: mL(mo ntoon legaorthimi scapce )i ssrtcitl ysrongetr htn maN C 1mo(notoen plyonmiao slzeifo murls). Tahis mayb es ee as a ntrisctyl sronteg arppilcaito onfthe omcumnictioa gnme tecahiqun eintorudce dybKar cmehra d niWdgesron .hTsesi uSprvesior M:cihealS psir eitTel: rPfeosso