-* 1.利用集合中元素的属性,检验元素是否属于集合。
例1 设,求证:
(1);
(2);
(3)若,则
[证明](1)因为,且,所以
(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以
(3)设,则
(因为)。
2.利用子集的定义证明集合相等,先证,再证,则A=B。
例2 设A,B是两个集合,又设集合M满足
,求集合M(用A,B表示)。
【解】先证,若,因为,所以,所以;
再证,若,则1)若,则;2)若,则。所以
综上,
3.分类讨论思想的应用。
例 3 ,若,求
【解】依题设,,再由解得或,
因为,所以,所以,所以或2,所以或3。
因为,所以,若,则,即,若,则或,解得
综上所述,或;或。
4.计数原理的应用。
例4 集合A,B,C是I={1,2,3,4,5,6,7,8,9,0}的子集,(1)若,求有序集合对(A,B)的个数;(2)求I的非空真子集的个数。