Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
eachblockinputstatePI=
rob (i,s),theleakagecurrentforabuilding
Prob(i,s)
W(type(i,s))leakis:
(Block)·I leak(i,s)(4)
i
s
L
whereW(type(s))referstothetransistorwidthofNMOS(when
type(s)isN)orPMOS(whentype(s)isP).
throughInputnetworkstatesimulation.simulation.
InputstatescanalsobetrackedIleak(Block,t)=
W(type(i,s(t)))L·I
leak(i,s(t))
(5)
i
where,Ileak(Block,t)istheleakagecurrentattimet,and
s(t)isthestateofcircuittypeiattimetwithinthiscircuitblock.
Finally,wecanestimatethetotalleakagecurrentofarouterbu er(Eq.6)whileitsleakagepowerisleakagecur-rentmultipliedbysupplyvoltage(Eq.7).
Ileak(buffer)=(Pr+Pw)BIleak(Twd)+2PwFIleak(Tbd)+2BFIleak(Tc)+2BFIleak(Tm)
+2BF(PwIleak(Tpw)+Pr·Ileak(Tpr))
(6)Pleak(buffer)=Ileak(buffer)·Vdd
(7)
2.3Validation
WevalidatedourmodelwithHSPICEsimulationofeachcompletefunctionalunitofachip-to-chiprouter(crossbar,arbiter,andbu ers)in0.07µmtechnology.Leakagecur-rentsunderdi erentinputstateswereestimatedwithourmodelandcomparedwiththeleakagecurrentsobtainedfromHSPICEsimulationforthesamefunctionalunitwiththesameinputstates,theexactstructureandfeaturesizes.Forinstance,a5-by-5matrixcrossbarunithas5datain-putsand25controlsignals.Thecombinationoftheirvaluesdeterminetheinputstateofthecrossbarandthustheleak-agecurrent.Forsuchfunctionalunitswithavastnumberofpossibleinputstates,weselectarandomsampleoftyp-icalinputstatesforvalidation.Theaccuracyofourmodelforthesefunctionalunitsiscomputedbyaveragingacrossdi erentinputstates.Table3showsmeanandstandardde-viationofourmodel’serrorin0.07µmtechnologycomparedwithHSPICEsimulation.Sinceleakagecurrentislargeat0.07µm,weexpectthemagnitudeoferrortobelargerthanthatinearlierprocesstechnology.
Table3:Validationofourmodelvs.HSPICEsimula-tionforeachmajorbuildingblockofarouter.
3.
DYNAMICANDLEAKAGEPOWERCH-ARACTERIZATIONOFINTERCONNE-CTIONNETWORKS
CombinedwithOrion,anarchitecturaldynamicpowermodelfornetworks[9],wecharacterizedthetotalpowerconsumptionofbothanon-chipnetworkandachip-to-chip
network.Theon-chipnetworkisparameterizedasin[3],witha4-by-4meshnetworkona12mm2chip,eachnodeclockedat1GHz,with5input/outputports(oneofwhichistheinjection/ejectionport),64 itbu ersperinputport(each it128bitswide),connectedwitha5-by-5matrixcrossbarand55:1arbiters.Therouterinthechip-to-chipnetworkhas256128-bit itbu ersperinputportinstead,otherparametersremainingthesameasthatintheon-chipnetwork.ThefeaturesizeofthetransistorsisderivedbyOrion[9]fromarchitecturalparametersbasedonthetimingdelayrequirementsandassumingminimumarea.
E ectofprocesstechnology.Tables4and5showtheestimatesforarouterinachip-to-chipandon-chipnetworkrespectivelyat50% itarrivingratein1sat80oC.Astech-nologyscales,leakagepowerbecomesincreasinglysigni -cant,startingfrom2.5%oftotal(leakage+switching)poweratcurrent0.18µmtechnology,toahefty60%at0.07µmtechnologyifclockfrequencyiskeptinvariantforthechip-to-chipnetwork.Evenassumingdoublingclockfrequenciesaswescaleprocesstechnology,leakagepowerremainsasig-ni cant27%at0.07µm.Thoughtheon-chipnetworkhasfewerstorageelements,leakagepowerstillrisestoasigni -cant21%at0.07µm,assumingclockfrequencydoubleseachprocessgeneration.
Table4:Dynamicandleakagepowerestimatesofa
routerinachip-to-chipnetwork.
power(W)power(W)Distributionofleakagepowerbetweenrouterandlinks.FromTable5,itisevidentthatfull-swingon-chiplinkdriversandwiresconsumesubstantialdynamicpower,overwhelmingthatoftheroutercorein0.10and0.07µmpro-cesses.However,whenyoulookatleakagepowerconsump-tionofroutervs.links,theconverseistrue.Aswiresdonotdissipateleakagepower,theleakagepowerconsumptionofjustthedriversisminimal,comparedtothatoftheroutercore.Thispromptedustodelveintoaleakagepowerbreak-downofvariousfunctionalunitswithinanon-chiprouter.Breakdownofleakagepowerwithinarouter.Fig.2showstheleakagepowerconsumedbythevariousmajorfunctionalunitsofanon-chiprouteranditslinksatdif-ferentprocesstechnologies.Itshowsbu ersconsumingap-proximately64%percentleakagepowerofthetotalnode(router+link)forallprocesstechnologies,standingasthelargestleakagepowerconsumer.Ourcharacterizationhigh-lightsrouterbu ersasaprimecandidateforleakagepoweroptimization.
4.POWER-AWAREBUFFERS
Asinterconnectionnetworksexperiencesigni canttem-poralandspatialvarianceinworkloadthatleadstohighlyvaryingbu erutilization,weproposepower-awarebu ersasanarchitecturaltechniqueforleakagepoweroptimizationininterconnectionnetworks–i.e.bu ersthatregulatetheirownleakagepowerconsumptionbasedonactualutilization.