Abstract It has long been known that there are potentials on n-dimensional constant curvature spaces for which a given Hamiltonian system in classical mechanics, and Schrodinger equation in quantum mechanics, admits solutions via separation of variables in
Schrodinger's equation for this potential has the form
#@? s@ )+ (s@? s@ )+ (s@? s@ )+ (s@s@s@s@s@s@s 0 2 31 (k? ) (k? ) 5A s+ q1@? q 4q+q=?2E: s+s 4 s+s s+s+s s+s?s This equation admits solution via separation of variables in two coordinates systems: spherical and elliptical coordinates of modified type1 2 2 2 1 1 3 3 2 1 3 2 2 2 3 3 2 1 1 4 2 2 1 4 2 1 2 2 2 1 2 2 2 1 2 2 1 2 1 2 2 1
"
s0= cos f s+ sin f s;1 1 3
s0= s;2 2
s0=? sin f s+ cos f s3 1
3
where and
(y? e?e ) si= (e? ei )(y? e i ); j )(ei j2 1 2 1 2 3 1 1
i; j; k= 1; 2; 3 i 6= j 6= k;1 e= e+ 4 (E? E?);3 2+ 2
v u (e? e ) u sin f= t (e? e );2
1 e= e+ 4 (E+ E? );1 2+ 2 2+ 2+
1 yj= e+ 1 (E+ E?)+ 1 E E? (Zj+ Z ); j= 1; 2: 4 4 j Indeed if we use the variables U= Z Z; U= (Z+(?)(Z1)+? ); U= (Z+( )(Z1)+ )??? where E= E;?= E?; E? q^ then, putting k= 2(E? i )+ 1=4 and E= i+ E and multiplying the?? 1, we see that the resulting equation has Schrodinger equation by (Z Z ) the form@@@@@@ H= (U@U? U@U )+ (U@U? U@U )+ (U@U? U@U ) )+2 3 1 2 2 1 1 2 2 2 2 1+ 2+ 2++++ 3 1 2 1 1 2 2 2 1 1 3 3 2 1 3 2 2 2 3