手机版

Multiseparability and Superintegrability for Classical and Q(6)

发布时间:2021-06-08   来源:未知    
字号:

Abstract It has long been known that there are potentials on n-dimensional constant curvature spaces for which a given Hamiltonian system in classical mechanics, and Schrodinger equation in quantum mechanics, admits solutions via separation of variables in

To clarify the connection between these ideas and variable separation we assume that the coordinates q are orthogonal, i.e., the covariant metric tensor is diagonal:

X X ds= gjk dqj dqk= Hj (q) dqj; so that the Hamilton-Jacobi equation is given by X@S H= Hj? (@q )+ V (q)= E j j2 2 2 2 2

(11)

@S Set@qj= Sj= pj and assume additive separation in the q coordinates, so that@j Si=@j@i S= 0 for i 6= j . The separation equations are postulated to be

Si?2

n X

j=1

uij (qi) j+ fi (qi)= 0;

i= 1;

; n;

1

= E:

(12)

Here@k uij (qi)= 0 for k 6= i and det(uij ) 6= 0. We say that U= (uij ) is a Stackel matrix. Then (11) can be recovered from (12) provided Hj?= (U? ) j . The quadratic forms2 1 1

L`=satisfy

n X

j=1

(U?1 )`j (p2+ fj

j (qj ))=

n X

j=1

(U? )`j pj+ W`(q)1 2 2 2

Hj pj+ V (q) for a separable solution. Furthermore, we have fL`; Lj g= 0;` 6= j Thus the L`; 2` n, are constants of the motion for the Hamiltonian L. An analogous construction, replacing (12) by n second-order linear ODE's for factors i (qi) leads to second order linear partial di erential operators L= H; L;; Ln such that H= E; L`=`;`= 2;; n (13)

L`=?`;

H=L=1

X

1

( )

1

2

Multiseparability and Superintegrability for Classical and Q(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)