手机版

Multiseparability and Superintegrability for Classical and Q(19)

发布时间:2021-06-08   来源:未知    
字号:

Abstract It has long been known that there are potentials on n-dimensional constant curvature spaces for which a given Hamiltonian system in classical mechanics, and Schrodinger equation in quantum mechanics, admits solutions via separation of variables in

property, and is fal

se for general symmetries. Consider Euclidean 2space with Hamiltonian H= px+ py . The algebra of all symmetries of H is generated by px; py; M= xpy? ypx. Let2 2

L= M+ px py; L= p x: Then we have R= fL; L g= 4Mpxpy and1 2 2 2 1 2

analytic at this point. Thus it has no power series expansion about the origin.) 5. The quadratic algebra structure can be used to compute the interbase expansion coe cients.

R= F (L; L; L )= 16L L (L? L )? 16L 2 (L? L ) 23: Since H; L; L are functionally independent R must be a function of these symmetries. However, although F is de ned and bounded at the point (L; L; L )= (0; 0; 0), it is not a polynomial, and not even2 0 1 2 1 2 0 2 2 0 2 1 2 2 0 1 2

3

5 Examples in higher dimensionsAn extreme case, superintegrability in n dimensions, occurs for the Schrodinger equation ( n+ Vn(q))=?M (M+ G? 1) (21) where n 1 X ( i? )( i? )? 1 ( n? )( n? )+; (22) Vn=? 4 qi 4 q i1 2=1 2 3 2+1 1 2+1

G= Pn j

+1=1

= 1 (1? G)? 1? (n? 3)(n+ 1); 4 4 j, and n is the Laplace-Beltrami operator on the n-sphere. Here2

"

2 0

3 2

#

q+q+2 0 2 1

+ qn= 1:2

Multiseparability and Superintegrability for Classical and Q(19).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)