We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
measureonlythelinearresistance,andnotEasfunctionofj,adi erentapproachisto
usetheNyquistformula[16],
whichrelates
the
linear
resistancetotheequilibriumvoltage
uctuations:
R=1
2T
GiventheJosephsonrelationweseeimmediatelythattheKuboformulaequalstheNyquist
relation.
Thelinearresistancehasbeensuccessfullyusedinasimulation[12]tolocatethe
Kosterlitz-ThoulesstransitiontemperatureTcofthe2DlatticeCoulombgas.They nd
the nitesizescalingrelationatTc:
L2R1+ ∞ ∞dt Iv(t)Iv(0) canbeused.1
dt~τ 1,where φisthegradientofthephaseoftheGinsburg-Landau
orderparameter[18].Therefore,weexpectthelinearresistance,Eq.(5),toscalelike
R~ξ 2atTc.AtTcthecorrelationlengthdivergesandiscutofbythe nitesizeLofthe
latticeandhenceRL2=constatTc,tolowestorder.Thescalingrelationhasalogarithmic
correctionwhichhasbeenincludedinEq.(6).Thiscorrectionisreadilyobtainedfromthe
correspondingcorrectiontermsfor1/ andλ[19].