We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
lengthequalsthesystemsize,andthenonlineardependenceoftheresistanceonthecurrent
vanishes.Theregimewhereweprobethenon-linearIVcharacteristicisforthis gure
approximatelyfromlnj≈ 1.5upto≈ 0.5.AccordingtotheKosterlitz-Thoulesstheory
theslopeofthelinesshouldbe3atthecriticaltemperature,andthiscriteriacanbeusedto
determineTc.Wewillhoweveruseanindependentdetermination[12]ofTcforthissystem,basedonthe nitesizescalingrelationEq.(6).
InFig.1bwedemonstratethee ectsofthe nitelatticesizeforlowdrivingcurrents
attemperaturesbelowTc.ThedatashownareforT=0.15andlatticesizesareL=8
(triangles),12(opensquares),16(stars),24(opencircles),and32( lledcircles).
The nitesizee ectsforthelowertemperaturescanbeunderstoodinthefollowingway.
(SeethediscussionabovefollowingEq.(15).)The nitelatticesizeisimportantbecause
pairexcitationoverthebarriergivenbytheperiodicitylengthLwilladdtothedissipation
duetounbindingofpairsoverthebarriergivenbythepairsizer .Theinducedelectric
eldwillaccordinglybeoftheform
E=R(L)j+constantjE1/2T+1,(26)
wherethe rsttermR(L)followsfromEq.(16)andR(L)→0asL→∞.Thesecond
terminEq.(26)isgivenbyEq.(15)andwillremain niteinthelimitL→∞.Thisis
clearlydemonstratedinFig.1bwhereweseethatthecrossoverinEq.(26)betweenthe
linearandnonlinearregimeappearsatahigherdrivingcurrentforthesmaller8×8lattice
asthecurrentlength(E1/I=ξI~L)associatedwiththecurrentdensityjexceedsthesize
ofthelattice.
InFig.2theexponentaIV(X)isshownasafunctionofthereducedtemperature
X=T/Tc.ThedashedhorizontallinerepresentstheuniversaljumpconditionforaIV(X).
TheplussesrepresentexperimentaldatafromasuperconductingHg-Xe lm[4,26].The
lledcirclesaretheresultsforaIV(T)fromFig.1.Theotherthreedatasetsarefor
latticesizesL=16(stars),24(opencircles),and48(triangles).Asonecanseethereare
noapparent nitesizee ectsinthedata.Inthevicinityofthecriticaltemperaturethe