We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
as
TheobtainedscalingexponentaRasafunctionoftemperatureisshowninFig.7.AsacomparisonwealsoshowdataforaIV(T)fromFig.2,obtainedfromdirectevaluation
oftheIVcharacteristic.The nitesizescalinganalysisinFig.6breaksdownforlow
temperatures.ThiscanbeseenbythedeviationofaR(T)fromthedataforaIV(T)at
T=0.15.InFig.7thisdeviationisalsoevident.Acarefulinspectionofthescalingat
temperaturesT=0.15andT=0.18revealsthattheorderofthelatticessizesisreversed
forT=0.15comparedwiththehighertemperatures.Thismayberelatedtothedi culties
toconvergethesimulationatlowtemperature. aL,L′(R(L)L R(L′)L′a)2.TheconsideredlatticesizesareL,L′=6,8,12,16,24,32.
VI.DISCUSSION
WehavecalculatedthenonlinearIVexponentaIV(T)ofthetwodimensionallattice
Coulombgas.Ourresultsarebasedonthreedi erentdeterminations.Adirectcalculation
parisonwithexperiments
[4,7,8,26]onHg-Xe lmsandsinglecrystalhighTcsuperconductorsshowgoodagreement.
Oursecondmethodisbasedonasimpleselfconsistentcalculationofthedielectric
function attheunbindingseparation,andtheIVexponentcanthenbecalculated.Here
weespeciallyfocusonthecomparisonoftworelationsbetweena(T)and .The rstrelation
Eq.(20)[17]isbasedonordinarydi usionintwodimensionswitharecombinationrate
proportionalton2F.Thesecondexpressionfora(T)giveninEq.(21)hasbeenderivedfrom
ascalinganalysis[21].
We ndthattheexponentdeterminedbyEq.(21)fortemperaturesbelowTcisclose
tothemoredirectdeterminedaIV(T)andwillthereforealso ttheexperimentsforthese
temperatures.
ThethirdmethodisbasedonequilibriumMonteCarlosimulations.Fromthescaling
relationEq.(17)forthelinearresistancewecanderiveaR(T).We ndthatthescaling
exponentaR(T)toahighdegreeofaccuracy tsthedirectdeterminedaIV(T)forabroad