We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
derivativesofE1(r))beincludedsimplybyreplacingE1inEq.(15)by1/ (2
π/r )intheextremumequationI=E1/r .Ourrationaleforthischoiceisthatattheseparationr the
vortexpairisbrokenapartandwethereforeusethesti ness1/ (r)ofthesystematthis
separation.We ndtheappropriate (r)bysolvingselfconsistentlytheequation
I=1
(k )2π(19)
Theselfconsistent obtainedbysolvingEq.(19)willbedenoted .Therelationbetween
theexponenta(T)andthedielectricfunction isaccordingtoEqs.(15)and(10)givenby
theexpression(seeAmbegoakaretal.[17])
a(T)AHNS=1
T 2(21)
AsoneimmediatelyrealisesEq.(21)isnotconsistentwiththeactivationargumentused
toderiveEq.(20).InordertoreconcileEq.(21)witharateequationlikeEq.(13)
Minnhagenetal.havemadethefollowingsuggestion.Theyassumethattheactivationis
correctlyrepresentedbyΓinEq.(14).Therecombination,whichinEq.(13)isrepresented
1+bbytheinnocentlylookingtermn2F,isontheotherhandsupposedtobereplacedbynF
withb=2/(E1/T 2).Thesoleargumentforthisreplacementisunfortunatelysofar
simplytheobservationthatonethencanderiveEq.(21)fromanequationlikeEq.(13).
Nonetheless,weshallseebelowthatfortemperaturesbelowTcEq.(21) tsthesimulation
datamuchbetterthanEq.(20)does.Howeveramotivationforarecombinationterm
di erentfromtheoneinEq.(13)hasnotbeenpresented.AtTcbothrelationsreproduce
thesameexponenta(T=Tc)=2.