手机版

学而思 小升初第6讲_小升初专项训练_找规律篇(4)

发布时间:2021-06-08   来源:未知    
字号:

学而思 小升初第6讲_小升初专项训练_找规律篇

【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?

【来源】 第五届“华杯赛”初赛第16题

【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子. 2 图表中的找规律问题

【例4】、(★★)将自然数1,2,3,4, 按箭头所指方向顺序排列(如图),依次在2, 3,5,7,10, 等数的位置处拐弯.

(1)如果2算作第-次拐弯处,那么,第45次拐弯处的数是 . (2)从1978到2010的自然数中,恰在拐弯处的数是

.

【来源】 北京市第十二届“迎春杯”决赛第三题第3题

【解】 (1)仿照E1—026,画23条竖线,23条横线,第45次拐弯处的数是23×23+1=530 (2)拐弯处的数是n×n+1或n×(n+1)+1(n是自然数).由于 44×44+1=1937<1978,45×45十1=2026>2010,

44×45+1=1981在1978、2010之间.所以恰在拐弯处的数是1981.

【解】 根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.

【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;

学而思 小升初第6讲_小升初专项训练_找规律篇

(2)数127应排在上起第几行,左起第几列?

【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.

由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.

3 较复杂的数列找规律

【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。从这六个数中每次或者取1个,或者取

几个不同的数求和(每一个数只能取1次),可以得到一个新数,这样共得到63个新数。把它们从小到大一次排列起来是1,3,4,9,10,12, ,第60个数是______。 【来源】1989年小学数学奥林匹克初赛第15题 【解】最大的(即第63个数)是 1+3+9+27+81+243=364

第60个数(倒数第4个数)是 364-1-3=360。

【例7】、(★★★)在两位数10,11, ,98,99中,将每个被7除余2的数的个位与十位之间添加-个

小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少? 【来源】 第五届“华杯赛”初赛第15题 【解】原来的总和是10+11+ +98+99=

(10 99) 90

2

=4905,被7除余2的两位数是

7×2+2=16,7×3+2=23, ,7×13十2=93.

共12个数.这些数按题中要求添加小数点以后,都变为原数的10,因此这-手续使总和减少了 1(16+23+ +93)×(1-)=

(16 93) 12

2

9×=588.6

所以,经过改变之后,所有数的和是4905—588.6=4316.4.

【例8】、(★★★)小明每分钟吹-次肥皂泡,每次恰好吹出100个.肥皂泡吹出之后,经过1分钟有-半

破了,经过2分钟还有20没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂

泡的时候,没有破的肥皂泡共有 个.

【来源】 1990年小学数学奥林匹克决赛第8题

【解】小明在第20次吹出100个新的肥皂泡的时候,第17次之前(包括第17次)吹出的肥皂泡全破了.此

时没有破的肥皂泡共有 100+100×20+100×=155(个). 2

4 与斐波那契数列相关的找规律

【引言】:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面。

学而思 小升初第6讲_小升初专项训练_找规律篇

已知一对兔子每个月可以生一对小兔子,而一对兔子出生后在第二个月就开始生小兔子。假如一年内没有发生死亡现象,那么,一对兔子一年内能繁殖成多少对?

现在我们先来找出兔子的繁殖规律,在第一个月,有一对成年兔子,第二个月它们生下一对小兔,因此有二对兔子,一对成年,一对未成年;到第三个月,第一对兔子生下一对小兔,第二对已成年,因此有三对兔子,二对成年,一对未成年。月月如此。 第1个月到第6个月兔子的对数是: 1,2,3,5,8,13。

我们不难发现,上面这组数有这样一个规律:即从第3个数起,每一个数都是前面两个数的和。若继续按这规律写下去,一直写到第12个数,就得: 1,2,3,5,8,13,21,34,55,89,144,233。

显然,第12个数就是一年内兔子的总对数。所以一年内1对兔子能繁殖成233对。

在解决这个有趣的代数问题过程中,斐波那契得到了一个数列。人们为纪念他这一发现,在这个数列前面增加一项“1”后得到数列:1,1,2,3,5,8,13,21,34,55,89, 叫做“斐波那契数列”,这个数列的任意一项都叫做“斐波那契数”。

【例9】(★★)数学家泽林斯基在一次国际性的数学会议上提出树生长的问题:如果一棵树苗在一年以后长出一条新枝,然后休息一年。再在下一年又长出一条新枝,并且每一条树枝都按照这个规律长出新枝。那么,第1年它只有主干,第2年有两枝,问15年后这棵树有多少分枝(假设没有任何死亡)?

【解】 1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584 绝对是一棵大树。

【例10】(★★)有一堆火柴共 10根,如果规定每次取 1~3根,那么取完这堆火柴共有多少种不同取法?

【解】此题要注重思路,因为没办法直接考虑,这样我们发现这题同样用找规律的方法,我们可以先看只有1根的情况开始: 1根,有:1种;

2根,有1、1,2,共两种;

3根,可以有:1、1、1,1、2,2、1,3,共4种;

4根,有:1、1、1、1,1、1、2,1、2、1,2、1、1,2、2,1、3,3、1,共7=4+2+1种;

5根,有:1、1、1、1、1,1、1、1、2,1、1、2、1,1、2、1、1,2、1、1、1,1、2、2,2、1、2,2、2、1,1、1、3,1、3、1,3、1、1,2、3,3、2,共13=7+4+2种; 6根,得到24=13+7+4种;

即:n根,所有的取法种数是它的前三种取法的和。 由此得到,10根为274种。 [拓展]爬楼梯问题。

【例11】(★★★)对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止。问经过9次操作变为1的数有多少个? 【来源】 仁华考题

【解】这一题首先我们可以明确的是要采用逆推的方法,其次我们还得利用找规律来归纳出计算方法。在复杂的或者步子比较多的计数中,找规律是一种非常常用的方法。 归纳总结上述规律,从第三项起,每一项都是前两项之和。

学而思 小升初第6讲_小升初专项训练_找规律篇(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)