数列及其数列求和
(1) 从第二项起,每项是前一项与后一项的等差中项,an (2) an am (n m)d
an 1 an 1
(n>1) 2
(m,n N*)
(3) 若m+n = p+q , 则:am an ap aq,特殊的:若m+n=2r ,则有:am an 2ar (4) 若am n,an m,则有:am n 0 (5) 若Sm n,Sn m,则有:Sm n (m n)
(6) {an}为等差数列 an pn q(p,q为常数) Sn pn2 qn(p,q R) (7) Sm,
S2m Sm,S3m S2m┅┅仍成等差数列
(8){an},{bn}为等差数列,则{pan qbn}为等差数列(p,q为常数) (9)若项数为偶数2n,S偶-S奇=nd,
S奇S偶
=
an
an 1=n n 1
若项数奇数2n-1,S奇-S偶 an,
S奇S偶
(10)
an Sn Sn 1(n 2
)a1 S1
{an}为等比数列,则有
(1) 只有同号的两数才存在等比中项 (2) an amqn m
(m,n N*)
2
(3) 若m+n = p+q , 则:am an ap aq,特殊的:若m+n=2r ,则有:am an ar (4) {an},{bn}为等比数列,则{an bn},{
an
,{can}为等比数列(c 0) bn
(5) 等比数列中连续n项之积构成的新数列仍是等比数列,当q 1时,连续项之和仍为
等比数列
(6) an cq
n
(c 0,q 0)
Sn kqn k(q 0,q 1)
二、在数列中常见问题: