一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462139
~s¼SKÀ1Sc~
;ð28Þ
where~cisanarbitraryinputvector(withlengthequaltothenumberofdiscretecirculationvaluesonthegrid),~sisthesolution(withlengthequaltothenumberofdiscretestreamfunctionvalues),andtheoperatorSKSimpliesthefollowingoperations:
~cð1Þ¼~c8
;
ð29Þ>~cðkÞwherex2DðkÞnDðkÀ1Þ;~cðkÞ¼<
:
PðkÀ1Þ!ðkÞð~cðkÀ1ÞÞwherex2DðkÀ1Þ>;
ð30Þk¼2;3;...;Ng;~sðNgþ1Þ¼0;
ð31Þ~sðkÞ¼SKÀ1Sc~
ðkÞþbcs½Pðkþ1Þ!ðkÞð~sðkþ1ÞÞ ;k¼Ng;NgÀ1;...;1;ð32Þ~s¼SKSc~
¼~sð1Þ:ð33Þ
HereP(kÀ1)!(k)(k)!(kÀ1)isa ne-to-coarseinterpolationoperator
andPisitscoarse-to- necounterpartrestrictedtooDðkÀ1Þbybcs.
InconstructingP,itwouldbedesirabletopreserve(tomachineroundo )certainmomentsofthecirculationdis-tributionsothatthevelocitydecayratefarfromthebodyiscorrect.Inthepresentimplementation,weattempttopreserveonlythetotalcirculation.Switchingfrommatrix/vectortopoint-operatornotation,wewrite,forthetwo-dimensionalcase,
PðkÀ1Þ!ðkÞðc~
ðkÀ1ÞÞðkÀ1Þ
2i;2j¼~ci;jþ1ðkÀ1Þ1ðkÀ1Þ
2~ciÀ1;jþ2~ciþ1;j
þ12~cðkÀ1Þi;jÀ1þ12~cðkÀ1Þi;jþ1þ14~c
ðkÀ1ÞiÀ1;jÀ1þ14~cðkÀ1Þ1ðkÀ1Þiþ1;jÀ1þ4~ciÀ1;jþ1þ1ðkÀ1Þ4~c
iþ1;jþ1
:ð34ÞThe9-pointstencilleadstoaconservationofthetotalcir-culationandissecond-orderaccuratebasedonaTaylor-seriesexpansion.Wenotethatthecoe cientsinEq.(34)sumto4sincethecirculationinthe(dual)cellisthevortic-itymultipliedbythearea,andcoarsifyingthegridbyafac-torof2resultsinafactorof4increaseincellarea.Thethree-dimensionalversionofEq.(34)consistsofaveragingEq.(34)overtwoadjacent(i,j)planesofdatanormaltothevorticitycomponent,foreachofthethreecomponents.Forthecoarse-to- neinterpolationattheboundaryofthenext- nermesh,weusethevaluefromthecoarsermeshforthosegridpointsthatcoincide,andamid-pointlinearinterpolation(againsecond-orderaccurate)forthosepointsinbetween.
Wenotethatcirculationisonlystrictlypreservedifthereisnovorticityadvectingordi usingoutoftheoriginaldomain.Duringvorticitytransferfrom netocoarsemesh,circulationisonlypreservedtothelevelofdiscretizationerror,sincethediscretizationerrorisdi erentoneachmeshandadvectionanddi usionratesarethereforeslightlydi erent.Testsbelowcon rmthatchangesincircu-lationasstructurespassbetweenthedi erentdomainsareappropriatelysmall.
Utilizingthemulti-domaindescriptionofthecirculationandsolutionofthePoissonequation,wenowwritetheoverallsystemofequationstobesolvedateachtime-step.S IþbDt
K
ScðkÞ
ü 2IÀbDtCTC
cðkÞnþDtð3CTNðqðkÞnÞÀCTNðqðkÞnÀ1
22
ÞÞþDt
bckÞðcðkþ1ÞÃÞ þ½Pðkþ1Þ!ðkÞðcðkþ1Þn2
cð½Pðkþ1Þ!ðÞ Þ; k¼Ng;NgÀ1;...;1;
ð35ÞECSKIþbDtK À1
!SðECÞT~f¼ECSKScð1ÞÃþ1
2
ÀunB;ð36Þcnþ1¼cð1Þ
Ã
ÀS IþbDt2
K À1
SðECÞT~
f;ð37Þsnþ1¼SKScnþ1:
ð38Þ
Notethatinsolvingforthestreamfunctionatthenexttimestep,Eq.(38),wesavethecoarsi edcirculation eldsandstreamfunctionstouseontheright-handsideofEq.(35)atthenexttime
step.