一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462135
Fig.3.TopviewofvorticalstructurebehindarectangularplateofAR=2anda=30°representedbyanisosurfaceofQ=1forRe=100atdi erenttimes.Streamlinesareoverlaidwithcolorcontourindicatingthelocalvelocitynormfrombluetoredinincreasingmagnitude.Flowdirectionfromtoplefttobottomright.(Forinterpretationofthereferencestocolourinthis gurelegend,thereaderisreferredtotheconversionofthisarticle.)
andtipvortices.TheisosurfaceherearegeneratedforunitQ-value(secondinvariantofthevelocitygradienttensor)toshow owregionswithsigni cantrotation.3Streamlinesarealsodepictedtoillustratethetip-e ects.Initiallyastrongtrailing-edgevortexisformedconvectingdown-streamwhiletheleading-edgeandtipvorticesstaystablyattachedtotheplate(t=1.5).Lateratsteady-state(t=13),thedi usedleading-edgevorticalstructureisstillstablyattachedtotheplate.Inthecaseofthree-dimen-sional ow,theviscousdi usionofvorticityinthespan-wisedirectionandthetip-e ectstabilizesthewakestructureatthislowRe.Resultswithvariousaspectratio,anglesofattack,andplanformgeometriesareexaminedinfurtherdetailin[37].
3.Nullspacemethodfortheimmersedboundarymethod3.1.Nullspaceapproach
Thenullspaceordiscretestreamfunctionapproach[11,4]isamethodforsolvingthesystem(7)withouttheimmersedboundaryformulation.Inthiscase,the owonlyneedstosatisfytheincompressibilityconstraint,whichleadsustotheuseofdiscretestreamfunction,s,suchthatq¼Cs;
ð13Þ
whichautomaticallyenforcesincompressibilityatalltime;Dqn+1=DCsn+1=0.Thisdiscreterelationisconsistentwiththecontinuousversionofthevectoridentity:$Æ$· 0.4
Pre-multiplyingthemomentumequationwithCT,thepressuregradienttermcanalsoberemovedfromthefor-mulationsinceCTGp=À(DC)Tp=0,resultinginonlyasingleequationtobesolvedforeachtimestep:CTACsnþ1¼CTðrn1þbc1Þ:
ð15Þ
Inthismethod,themostcomputationallyexpensivecom-ponentofthefractionalstepmethod,namelythepressurePoissonsolver,iseliminatedwhilethecontinuityequationisexactlysatis ed.Moreoverthefractionalsteperroraris-ingfromusinganapproximateAÀ1isnotpresentsinceanapproximateLUdecompositionisnotrequired.Thisfea-tureledChangetal.[4]tocallthistechniquetheexactfrac-tionalstepmethod.
WenotethattheoperatorCTisanotherdiscretecurloperation,andthat:c¼CTq;
ð16Þ
isasecond-orderaccurateapproximationtothecirculationineachdualcell(vorticitymultipliedbythecellareanor-maltothevorticitycomponent).
Thismethodmayingeneralbeusedonunstructuredmeshesintwoandthreedimensions[4],including,asaspe-cialcase,thesimpleCartesianmeshusedinIBmethods.Intwodimensions,thediscretestreamfunctionandcircula-tionhaveasinglecomponent(inthedirectionnormaltotheplane),whichisnaturallyde nedatthecellvertices(seeFig.4)[4].Inthreedimensionstherearethreecompo-nentsofthestreamfunctionandcirculationthatarede nedatthecentersoftheedgesoftheVoronoi(dual)cell,anal-ogouslytothevelocitycomponentsontheprimal
mesh.
Notethatwehavesetbc2=0whichisthecasefortheboundaryconditionsweconsiderhere.Moregeneralsituationsthatrequirebc250canbehandledby ndingaparticularsolutionfortheinhomogeneousvectorandaddingthesolutiontoEq.(13).
4
whereCrepresentsthediscretecurloperator.Thisopera-torisconstructedwithcolumnvectorscorrespondingtothebasisofthenullspaceofD.Changetal.[4]shouldbeconsultedfordetails.Hence,theseoperatorsenjoythefol-lowingrelation:DC 0;
3
ð14Þ
TheQ-value(thesecondinvariantof$u)isde nedas
22
Q 1ðkXkÀkSkÞ,forincompressible owwhereXandSaretheasymmetricandsymmetriccomponentsof$u,respectively[13].Comparedtothevorticitynorm,positiveQ-valuescanhighlightvorticalstructuresbyremovingregionsofhighshear.