一些ME专业提升的论文。
2144T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
AppendixA
Examplesofthepoint-operatornotationimpliedbysomeofthematrix–vectormultipliesinthepaperaregivenhere,forthe(relevant)caseofauniform,two-dimensional,staggeredgridwithequalgridspacing,D,inbothdirections(forwhichM=I).Theseoperatorscanallbesimplyderivedasspecialcasesofthoseusedforunstructuredmeshes[4],andthree-dimensionalversionsarestraightfor-ward.Notreportedherearetheregularization/interpola-tionoperators(E,H)whicharegivenby[36].Inwhatfollowsthesubscriptsiandjrefertotheithandjthcellsinthexandydirections,respectively,andthesuperscript(k),ifpresent,referstothekthcomponentofavectorquantitysuchasvelocityorgradientofpressure.ðDqÞð1Þ
ð1Þ
ð2Þ
ð2Þ
i;j¼qiþ1;jÀqi;jþqi;jþ1Àqi;j;
ð41ÞðGpÞð1Þ
i;j¼pi;jÀpiÀ1;j;
ð42ÞðGpÞð2Þ
i;j¼pi;jÀpiÀ1;j;ð43ÞðCsÞð1Þ
i;j¼si;jþ1Àsi;j;
ð44ÞðCsÞð2Þ
i;j
¼Àðsiþ1;jÀsi;jÞ;
ð45Þ
ðCTqÞ¼qð2Þ
ð2Þ
ð1Þ
ð1Þ
i;ji;jÀqiÀ1;jÀðqi;jÀqi;jÀ1Þ;
ð46Þ
ReD2ðLqÞðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ
i;j¼qiþ1;jþqiÀ1;jþqi;jþ1þqi;jÀ1À4qi;j;k¼1;2:ð47Þ
AppendixB
Inthisappendix,wederivethetheoreticalestimatesfor
thevelocityerrorexpectedfromtheuseofmulti-domainboundaryconditionsforthePoissonequation.Wecon-siderthevelocityerrorsforpotential owaroundacylin-derandstationaryOseenvortexdiscussedearlierintheSection5.
B.1.Errorestimateforpotential owoveracylinderLetusconsideracircularcylinderofdiameterDsituatedattheorigininsidearectangulardomain[ÀL/2,L/2]·[ÀrL/2,rL/2].SidelengthLheredenotesthesizeofthesmallestDð1ÞandwerepresentNthesizeofthelargestdomainDðNgÞbyaL,wherea¼2g=2.Aspectratioofthedomainsisdenotedbyr.Toassessthevelocityerror,wecomputethevelocityerrorattopcenterofDð1Þðx¼
0;y¼r
LÞ.Otherpointsinthedomainscalesimilarly.Theexactpotential owsolutionatthispointforanunboundeddomainis
"u1þ D
2#
exact¼UL;ð48Þ
whereUisthefreestreamvelocityvalue.Thecorrespond-ingverticalvelocityviszeroatthispoint.
Toestimatetheerrorinducedbythemulti-domain
approach,thee ectofDirichletboundaryconditionsonthelargestdomaincanbeassessedusingthemethodofimages.Assumingthecylinderisplacedattheorigin,weobtain:X1uimages¼UþU
X1ðÀ1Þ
iþj
ðD=2Þ2ðy22
jÀxiÞ;
ð49Þ
i¼À1j¼À1
ðx2iþ
y2jÞ
wherexiandyjcorrespondstothedistancefromthecenter
ofÀthe(i,j)thÁcylindertothepointoferrorassessmentx¼0;y¼r
L.Substitutingxi=aLiandyandsubtractingtheexact(free-space)solution,j¼arLjþrLweobtain,theerror ¼uimagesÀuexact
1¼ÀUD2UD2XX1iþjr2Àjþ12a
2Ài2r2L2þ4a2L2ðÀ1Þi¼À1j¼À1r2jþ1222þi
UD2UD2p21
¼ÀXr2L2þ4a2L24ðÀ1Þjfcsch2½bjða;rÞ
j¼À1
þsech2½bjða;rÞ g;
ð50Þ
wherebjða;rÞ¼follows.Forthe4a
ð1þ2ajÞ.Thesumcanbebrokenupasj=0term,aTaylorseriesexpansionforlargeaisused.Forj50,1+2ajcanbereplacedby2ajforlargeaintheexponentials.Wethenobtain:
¼ÀUD2p2 1
L8a2
3
þCðrÞ!
þOðaÀ4Þ;ð51Þwherethesum
CðrÞ¼X
1ðÀ1Þj
csch2
prj þ2 prj !ð52Þ
j¼1
2sech2isindependentofaandcanbeevaluatednumericallyforagivenaspectratio,r.Thusweobtaintheestimate
$ÀUD2 1
L3þCðrÞ!4ÀNg;ð53Þwhichisthedesiredresultthatshowsthattheerrorde-creasesgeometricallywithincreasinggridlevel.Notethat
wecanbemoreprecisebynotingthatthesumC(r)goesrapidlytozeroforr>1,andincreaseslike1/r2forsmallr.Thuswecanalsowrite $
UD2½minðL;rLÞ
4ÀNg:
ð54Þ
B.2.ErrorestimateforstationaryOseenvortex
FortheOseenvortex,wefollowasimilarsetupastheprevioussection,butplaceanOseenvortexattheoriginofthedomain.ÀWenowconsiderthenormalvelocityerroratthepointx¼L
;y¼0Á.Assumingthattheboundaryoftheinnermostdomainisoutsidethevortexcore,wehave