一些ME专业提升的论文。
2140T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
Whenvorticity(j)crossestheboundaryofagivengridlevel,thec eldsarenotnecessarilysmoothacrosstheinterfaces,especiallyatthecoarsestlevels.Thepropagationofavortexthroughmeshlevelsisexaminedinthenextsec-tionanditispossibletoseesomeslightinternalre ectionsofthelocalcirculationneartheboundary.However,theerrorsremaincon nedtoasmallregionneartheboundaryanddi usedovertimebythephysicalviscosity.
Themulti-domaintechniquecomeswithasigni cantincreaseincomputationalexpense.SincewenowsolvetheintermediatevorticityequationeachPoissonequationNgtimes,theoperationcountgoesupbyafactorofNg.Nevertheless,itenablesustoutilizethefastalgorithmdescribedintheprevioussection.Moreover,we ndthatthemulti-domainissu cientlyaccuratethatcomputa-tionaldomaincanbemadesnugaroundthebody.Runtimesforparticularexamplesarediscussedbelow.
Wenotethatinmanysituations,itisdesirabletospecifyauniform owaboutabody.Thisissimpletoaccomplishinthenullspaceformulation,asthereisnocirculationasso-ciatedwithit.Oneneedonlyaddtheuniform owtoqn
resultingfromEq.(27)andtounþ1
inEq.(36)onecouldaddanypotential owB
.Inprincipleinthisway,atleastpro-videditsatis esthediscretePoissonequationwithzeroright-handside.5.Validationexamples
5.1.Velocity eldforanOseenvortex
Thetwo-dimensionalvelocity eldassociatedwithaGaussiandistributionofvorticity(Oseenvortex)iscom-putedwiththemulti-domainboundaryconditions.Thistestisusedtovalidatethemethodologysinceitispossibletoderiveanalyticallytheexpectedimprovementinmulti-domainsolutionwithincreasingNgforthiscase.Asdis-cussedabove,thelargestdomainusesnopenetration/nostressboundaryconditions.Ananalyticalsolutionforthevelocity eldwiththeseboundaryconditionsmaybecon-structedbythemethodofimagessuchthattheexpectederrorforthemulti-domainboundaryconditionscanbeevaluated.TheprocedureisstraightforwardandisdescribedinAppendixB.Theresultsshowthattheerrorshoulddecreaseas4ÀNgingeneral,andforthespecialcaseofasquaredomain,therateimprovesto16ÀNg.Thevorticity eldisinitializedwithxðx;yÞ¼
C4pmeÀr2
;ð39Þwherer¼pt
x2þy2isthedistancefromtheorigin.Theanalyticalsolutionfortheazimuthalvelocityis
uC r2 hðx;yÞ¼2pr
1ÀeÀ:ð40Þ
Westartthecomputationattimet=t0andchooseCandt0suchthatthemaximumspeedisUatr=R.Inwhatfol-lows,alllengthsandvelocitiesarenormalizedbyRandU,
respectively.Thevorticityisevaluatedattheverticesofarectangulardomainwithuniform(andequal)gridspacinginbothdirectionsandthePoissonequationissolvedusingthemulti-domainmethoddiscussedabove.InFig.6,con-toursofthevelocityinthexdirectionareplottedforacasewithNg=5;thevelocitycomputedoneachofthe vedo-mainsareoverlaidtoshowthatthevelocity eldremainssmooththroughthedomaintransitions.InFig.7,theL1errorofu(theentirediscretevelocity eld)isplottedasNgisvariedfrom1to5,fortwodi erentcomputationaldomains.Fortherectangulardomainextendingto±4and±8intheNxandydirections,respectively,thedecayfol-lowsthe4ÀgtheoreticalestimatethroughNg=5.ForthesquaredomainÀNextendingto±5ineachdirection,weob-servethe16gdecaydowntoerrorsaround10À3whichcanbeshowntoberoughlythelevelofthetruncationerrorforthesecond-order nitevolumemethodatthisgridden-sity.Forthenon-squaredomain,werequireaboutNg=5toreducetheboundaryconditionerrortoasimilar
level.
Fig.6.MultidomainsolutionofthePoissonequationwithNg=5foranOseenvortex.Contoursofthevelocitycomponentinthexdirectionareplottedforeachofthe5grids.Thesmallestgridextendsto±5R,withgridspacingD=0.05R.Contourlevels:min=À0.2,max=0.2,increment=
0.02.